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1. Introduction

Isoscapes are a framework that describe the spatial patterns in iso-
topic ratios across a landscape and are useful for addressing a variety of
basic and applied research questions (West et al., 2010; Bowen and
Good, 2015). Stable isotopes of oxygen and hydrogen can be harnessed
to determine source-water contributions to streamflow on a range of
spatial and temporal scales (Rock and Mayer, 2007; Koeniger et al.,
2009; Wang et al., 2009; Mountain et al., 2015), estimate mean transit
times (McGuire et al., 2005; McGuire and McDonnell, 2006; Jasechko
et al., 2016), delineate animal migration paths (Chamberlain et al.,
1997; Hobson and Wassenaar, 1997), and understand hydrologic flow
paths (Rodgers et al., 2005; Singh et al., 2016; Nickolas et al., 2017).
Despite the widespread use of water isotope ratios in research and their
potential application for predicting future flows under a changing cli-
mate or for identifying likely areas of cool water for fisheries man-
agement, few studies have compared drivers of variation in isotopic
ratios at the basin scale or across basins.

The generation of accurate isoscapes is possible in part because
water stable isotope ratios exhibit systematic spatial and temporal
variation resulting from the process of isotope fractionation that ac-
companies water cycle phase changes and diffusion. Isotope fractiona-
tion is the primary force acting to produce variations in δ18O and δ2H
values (both spatially and temporally) in water sources across the globe
(Gat, 1996; Araguás-Araguás et al., 2000). An example of this process is
the Rayleigh rainout effect, wherein progressive isotopic depletion of a
vapor cloud occurs as it moves along its storm trajectory. Rayleigh
rainout occurs because heavy isotopes preferentially fall as

precipitation (Dansgaard, 1964; Clark and Fritz, 1997). As a result, both
precipitation and surface water isotopic ratios of δ18O and δ2H are
highly correlated with changes in elevation, latitude, and longitude
(Yonge et al., 1989; Ingrahm and Taylor, 1991; Dutton et al., 2005;
Lechler and Niemi, 2011), although the strength and presence of these
relationships can vary among river basins due to local processes such as
evaporation (Bowen and Good, 2015).

Although broad-scale patterns in water isotopic ratios are well
documented, when generating isoscapes for use in water resource
management, basin-scale factors that may affect isotope distributions
must be incorporated. Previous studies have shown consistent re-
lationships between elevation and surface water stable isotopes at the
basin scale (Biggs et al., 2015; Peng et al., 2015; Vespasiano et al.,
2015; Fan et al., 2016). When the elevation-isotope relationship is clear
and consistent, water isoscapes can be a valuable tool for assessing the
proportion of water that comes from high elevation, climate sensitive
snowmelt that may be critical for sustaining summer baseflow in
mountainous regions (Barnett et al., 2005; Brooks et al., 2012). How-
ever, within certain regions, the elevation-isotope relationship is weak,
absent, or inverse (Wassenaar et al., 2009; Lechler and Niemi, 2011;
Bershaw et al., 2012), suggesting that local atmospheric or hydrologic
mechanisms are overriding the elevation effect within these regions.
Basins in close geographic proximity can have fundamentally different
relationships between surface water isotope ratios and elevation
(Brooks et al., 2012; Nickolas et al., 2017); therefore, cross-basin ana-
lyses are needed to describe the variation in the landscape covariates
that are highly correlated with surface water isotope ratios in order to
identify where and how isotopic variation can be leveraged to identify
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distinct water sources within a river basin.
Previous studies have predominately generated water isoscapes in

two-dimensional space. Such models may be appropriate for estimating
terrestrial, oceanic, or atmospheric conditions such as precipitation
over the continental United States or the surface of the Atlantic Ocean
(Vachon et al., 2010; McMahon et al., 2013). The movement of stream
surface water, however, is constrained by the topology of the dendritic
stream network, which strongly affects the distribution of surface water
stable isotopes that are conserved as water moves downstream (Clark
and Fritz, 1997). To date, isoscapes of stream networks have largely
relied on interpolation using Euclidean distance (the straight-line dis-
tance between two sites) and have been restricted to predicting inputs
from the local catchment (Brooks et al., 2012; Katsuyama et al., 2015).
Although Bowen et al. (2011) modeled continuous river water isotope
values by accumulating elevation-explicit, gridded precipitation isotope
maps downstream and correcting them with model residuals, no ex-
plicit statistical method was used to partition the effects of downstream
transport versus landscape predictors such as geology. Given that ty-
pical two-dimensional models do not account for the branching struc-
ture of stream networks, longitudinal connectivity, or flow direction,
they may be inappropriate for use on river networks.

Ver Hoef et al. (2010) developed a class of geostatistical models,
spatial stream network models (SSNMs), which account for spatial de-
pendencies across stream networks. SSNMs are similar to conventional
linear mixed models in that the deterministic mean of the dependent
variable is modeled as a linear function of explanatory variables;
however, the assumption of independent errors is relaxed and an
atuocovariance model is used to account for spatial autocorrelation in
the errors (Ver Hoef et al., 2006; Peterson and Ver Hoef, 2010; Ver Hoef
and Peterson, 2010). The autocovariance model can be specified using
any combination of tail-up, tail-down, or Euclidean autocovariance
functions. Tail-up and tail-down functions use hydrologic rather than
Euclidean distance, and, in the tail-up model, spatial autocorrelation is
restricted to flow-connected locations (i.e., water flows from an up-
stream location to a downstream location). SSNMs have been applied to
answer a broad suite of questions, in each case improving model fit by
explicitly modeling spatial autocorrelation in the data (Isaak et al.,
2014; Brennan et al., 2016; Filipe et al., 2017). Application of these
models to water isotopes might provide information on the relative
influence of environmental versus spatial processes on isotope dis-
tribution, improve estimation of the covariate-isotope relationships
absent confounding spatial autocorrelation, and generate more robust
predictions of isotope values at unmeasured sites.

In this study, we compare the spatial patterns of surface water
isotopes across five basins within Washington and southeastern Alaska
to quantify and compare local controls on isotopic variability of surface
water and to explore the utility of applying simple elevation regressions
models for estimating water source across river basins. We also com-
pare the performance of models with and without network-based spa-
tial autocorrelation. Specifically, the objectives of our study are (1) to
compare the strength with which isotope ratios vary by mean wa-
tershed elevation (MWE) across five river basins, (2) to assess and
compare whether additional landscape predictors improve models of
isotope ratios across basins, and (3) to explore where SNNMs might be
used to improve river water isoscape generation.

2. Methods

2.1. Study sites

We selected five climatically and geographically distinct watersheds
across Washington and Alaska (Fig. 1). The Washington river basins
(Snoqualmie, Skagit, Green, and Wenatchee) are within the Cascade
Range with the Wenatchee River draining to the east (leeward), and the
other three rivers draining to the west (windward). Western Wa-
shington has a Mediterranean climate with dry summers and wet, mild

winters influenced by its proximity to the Pacific Ocean. Eastern Wa-
shington has a Continental climate with warmer summers, colder
winters, and comparatively less precipitation (Mote and Salathé, 2010).
The Alaska river basin, Cowee Creek, has a Temperate Rain Forest
climate characteristic of higher latitudes with cold, wet winters and
cool, wet summers. Precipitation in all regions occurs predominately
from October to March and falls as snow or rain, depending on latitude,
elevation, and proximity to the Pacific Ocean. Precipitation within all
basins originates from vapor coming from the Pacific Ocean. Average
climate and physical characteristics for each basin are displayed in
Table 1.

The Snoqualmie River begins as three distinct forks in the Mt. Baker-
Snoqualmie National Forest and drains 1793 km2 on the west side of the
Cascade Range, Washington. The three forks originate in forested public
land before converging and flowing through a mix of agricultural, re-
sidential, and commercial land use. On one major tributary, the Tolt
River, a dam and a large reservoir provide drinking water for the City of
Seattle.

The Green River drains a 1185 km2 watershed on the west side of
the Cascade Range, Washington. During the 19th and 20th centuries,
there was extensive railroad and logging activity in the upper Green
River valley; however, it has now become a gated water supply for the
city of Tacoma via damming of the river at the Howard Hansen Dam.
The lower portion of the river flows through downtown Seattle and is
heavily modified and urbanized.

The Skagit River drains 8163 km2 of the western Cascade Range
before emptying into Puget Sound. It originates from headwaters in
southwestern British Columbia and flows southwest before meeting up
with the Sauk River, which flows northwest and drains the North
Cascades. Five major hydropower projects are present on the Upper
Skagit and its tributaries. The river experiences year-round glacial in-
fluence from numerous mountains, including Mount Baker and Glacier
Peak, both of which exceed 3200 m.

The Wenatchee River drains 3440 km2 of the eastern Cascades be-
fore flowing into the Columbia River. Land use is similar to that of other
basins, wherein the headwaters originate in forested public lands before
flowing through a mix of agricultural, residential, and commercial land
use. As described above, the climate on the east side of the Cascades is
drier than that of the west side; however, the prevailing westerly winds,
which cross the Cascades, create temperature and precipitation patterns
that vary widely across the Wenatchee basin. For example, annual
precipitation on the crest of the mountains averages over 2900 mm, the
majority of which falls as snow, whereas eastward and at only 780 m,
the city of Wenatchee averages less than 235 mm of annual precipita-
tion.

Cowee Creek drains 118 km2 of the United States Forest Service
Héen Latinee Experimental Forest located in the Tongass National
Forest, Alaska. The watershed is approximately 15% glaciated and ex-
periences substantial influence from three alpine glaciers (18.2-km2)
and extensive perennial snowfields. The glaciers are rapidly dimin-
ishing and loss of the cool summer discharge from glacial melt is a
concern in fish habitat management. Cowee Creek is characteristic of
the thousands of moderately sized watersheds that drain the Coast
Mountains of Alaska and British Columbia, and in addition to perennial
snowfields, encompasses alpine meadows, spruce-hemlock forests, and
extensive valley-bottom wetlands.

2.2. Data collection and processing

We collected between 31 and 58 spatially distributed water samples
within each of our five basins in Summer, 2017 during baseflow
(Fig. 1). Sampling sites within each basin were selected to include a mix
of mainstem and tributary locations and to span the geographic and
elevation range found within each basin. Water samples were collected
within wading distance from the stream edge, but in flowing current.
Samples were collected in 20 ml vials with conical plastic cap inserts to
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prevent evaporation, and duplicates were collected for every 20th
sample.

Watersheds for each sampling point were delineated and landscape
variables describing the watersheds were derived from commonly
available geostatistical products (Table 2). We chose candidate cov-
ariates that were known to influence water isotope fractionation in
some basins, e.g., elevation and longitude (Dansgaard, 1964; Clark and
Fritz, 1997), as well as those that had some mechanistic basis for

influencing isotopic ratios, e.g., aquifer and soil permeability (Tauge
and Grant, 2009; Nickolas et al., 2017). Covariates examined include
catchment area, MWE, latitude, longitude, mean annual precipitation
(MAP), mean annual air temperature (MAT), aquifer permeability, and
soil permeability (Table 2).

Water isotopes were analyzed on a Laser Absorption Water-Vapor
Isotope Spectrometer (Model 908–0004, Los Gatos Research, Mountain
View, CA) located at the Integrated Stable Isotope Research Facility at

Washington, USAWashington, USA

Washington, USA
Washington, USA

Alaska, USA

A B

C D

E

Fig. 1. Geographic locations of study basins, the Snoqualmie (A), Green (B), Skagit (C), and Wenatchee (D) Rivers in Washington and Cowee Creek (E) in south-
eastern Alaska. Between 31 and 58 water samples were collected within each basin (nSnoqualime = 58, nGreen = 31, nSkagit = 38, nWenatchee = 44, nCowee = 38) and are
shown in yellow. Red points indicate a major dam and blue shading indicates an ice mass. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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the Western Ecology Division of the Environmental Protection Agency,
Corvallis Oregon. Oxygen and Hydrogen isotope ratios are reported as
delta (δ) values and presented in parts per thousand (‰) deviation from
the adopted standard representing mean isotopic composition of the
global ocean (Vienna Standard Mean Ocean Water). Measurement
precision estimates (± 1 standard deviation) were determined on re-
peated measures of both field and lab duplicates and were 0.12‰ for
δ18O and 0.17‰ for δ2H. Deuterium excess (d-excess = δ2H – 8 δ18O;
Dansgaard, 1964) is a measure of the evaporative influence on water
isotopes. The global meteoric water line (GMWL) has a d-excess value
of 10‰ but precipitation events vary around this value. Based on d-
excess variance in a 14-year record of precipitation isotopes collected in
Corvallis OR, we considered samples with d-excess values below 5‰ to
have been influenced by evaporation since falling as precipitation and
we removed those values from our analyses.

2.3. Data analysis

In all five basins, we first conducted exploratory and mapping
analyses to understand and display the spatial distribution of landscape
covariates (Table 2). We examined maps of and correlations between
landscape covariates to understand the distribution of and relationships
between predictor variables within and across watersheds. The goal of
these exploratory analyses was to understand underlying collinearity
between covariates that might hinder our ability to interpret statistical
models.

We then examined relationships between landscape covariates and
isotope values using exploratory single variable analyses and ex-
planatory multiple regression models. As δ18O and δ2H values are
highly correlated (Clark and Fritz, 1997), all regression analyses con-
sidered only δ18O values. We used ordinary least squares regression to
fit a linear model to each basin independently; the model explained
variation in isotope ratios as a function of a single landscape char-
acteristic (for the exploratory analyses) or suites of landscape char-
acteristics (for the explanatory models). For each univariate model, we
conducted a t-test to test whether or not the regression coefficient was
statistically different from zero. An alpha level of 0.001 was chosen to

indicate a significant relationship. A conservative cutoff was chosen
because of the large quantity of statistical tests necessary to explore all
potential predictors.

To identify the suite of landscape characteristics most closely as-
sociated with δ18O values, we constructed a best fit multiple regression
model for each basin. We selected variables in our final best-fit models
using a modified forward stepwise regression where we always in-
cluded MWE, if significant in the univariate model, as the first term in
the models. Only predictors significant at the univariate level were
additionally considered for inclusion. We did not include landscape
predictors highly correlated with predictors already in the model
(pairwise correlation greater than 0.8). To constrain the number of
statistical tests, total size of each model was limited to four covariates
and only main effects were examined. Covariates were individually
added to the model if they reduced the root mean squared error more
than other potential covariates, were significant at the univariate level,
and increased the overall coefficient of determination (R2). For each
best-fit model, we calculated the R2 and the root mean squared pre-
diction error (RMSPE) using leave one out cross validation (LOOCV). To
quantify variable importance in models with more than one covariate,
we calculated the independent effect of each covariate by comparing
the fit of all models containing a particular covariate to the fit of all
nested models lacking that covariate, through the process of hier-
archical partitioning (Murray and Conner, 2009; Walsh and MacNally,
2013). The resulting independent effect weights represent the average
contribution of each covariate to the variance in δ18O values over all
possible models, and are an estimate of the proportion of variance in
δ18O values explained by each covariate.

In the Snoqualmie and Wenatchee basins, we further modeled the
spatial relationship of δ18O values using semivariograms and SSNMs.
We chose to test the use of spatial tools in the Snoqualmie and
Wenatchee as these basins are similar in size and network configuration
but differ in the amount of isotopic variation explained by covariates.
Semivariograms depict how the semivariance, or average variation
between measurement values separated by some distance, changes in
relation to the distance separating them. Semivariograms are useful for
visualizing patterns of spatial autocorrelation in the measured data and

Table 1
Climate and physical characteristics for each basin.

Snoqualmie Green Skagit Wenatchee Cowee

Mean Annual Temperature (C°) Mean 8.16 8.25 6.36 6.15 1.76
Maximum 11.55 11.84 10.68 11.13 5.09
Minimum 1.77 4.04 −0.22 −0.12 −0.38

Mean Annual Precipitation (mm) Mean 2435 1810 2154 1210 3568
Maximum 4304 2727 4948 2940 4792
Minimum 1102 925 711 232 1792

Elevation (m) Mean 629 580 946 1087 638
Maximum 1876 1500 3283 2390 1791
Minimum 8 5 1 194 1

Basin Size (km2) 1793 1185 8163 3440 118

Table 2
Covariates considered for inclusion in each model. Here, “watershed” indicates the upstream area draining to a sample.

Covariate Abbreviation Description Unit Data Source

Elevation MWE Mean watershed elevation m NED DEM model
Mean Annual Precipitation MAP Mean watershed 30-year average (1981–2010)

annual normal precipitation
mm PRISM Climate Group, EPA StreamCat

(Hill et al. 2015)
Mean Average Air Temperature MAT Mean watershed 30-year average (1981–2010)

annual mean air temperature
C° PRISM Climate Group, EPA StreamCat

(Hill et al. 2015)
Area Area Log transformed watershed area log(km2) NED DEM model
Latitude Lat Latitude of watershed centroid degree
Longitude Lon Longitude of watershed centroid degree
Soil Permeability SoilPerm Mean watershed soil permeability cm/hour STATSGO, StreamCat (Hill et al. 2015)
Aquifer Permeability AqPerm Mean watershed aquifer permeability dimensionless; 1–7 based on

lithology
USGS Hydrologic Landscape Regions
(Wolock et al. 2004)
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model residuals. Low semivariance values indicate that sample pairs
within some distance are similar, whereas high values indicate dis-
similar sample pairs. If positive autocorrelation occurs within a data set,
the semivariance values are smallest at short distance lags and increase
with distance. We displayed and compared two measures of distance
between points: flow-connected distance (a network-based measure)
and Euclidean distance (a straight-line measure). Semivariograms of the
network-based distance consider only the topological distance between
sites and illustrate relationships between sites when flow-connectedness
is taken into account. Semivariograms of Euclidean distance reveal in-
teractions or lateral connectivity between the stream network and the
landscape. Semivariance was calculated using the robust estimator
(Cressie, 1993). We estimated the semivariogram at lag distances whose
bins contained greater than 10 site-pairs and that were less than half the
maximum flow-connected distance between sites (Zimmerman and Ver
Hoef, 2017). We examined semivariograms to visualize dependencies in
both raw δ18O values and residuals from the best-fit linear models and
SSNMs. Semivariograms were compared to one another to identify
scales of spatial autocorrelation (McGuire et al., 2014; Brennan et al.,
2016).

The SSNMs described in Ver Hoef and Peterson (2010) extend the
standard linear model as:

= + + + +β εY X z z zTD TU EUC

where Y is a vector of the response (i.e. isotope ratios), X is a matrix of
predictors (i.e. covariates from Table 2), β is a vector of estimated
coefficients, zTD, zTU, and zEUC are the tail-down, tail-up, and Euclidean
autocovariance models, and ε is a vector of independent normally dis-
tributed random errors. We followed a two-step procedure in fitting the
SSNMs (Peterson and Ver Hoef, 2010). First, we selected fixed effects
while maintaining a constant spatial component consisting of ex-
ponential tail-up and exponential Euclidean spatial autocovariance
functions. Fixed effects in our final SSNMs were selected independently
of the linear model approach, but were selected according to the same
process described above for best-fit linear models. Second, we used
Akaike Information Criterion (AIC) to select a covariance structure
while maintaining the fixed effect(s) selected in the first step. We
considered models having four possible spatial components: an ex-
ponential tail-up and Euclidean covariance structure, an exponential
covariance structure alone, an exponential tail-up covariance structure

alone, and a nugget-only model (i.e. assuming no spatial autocorrela-
tion). We examined the predictive accuracy using LOOCV, and calcu-
lated the R2, AIC, and RMSPE. We also decomposed the variation ex-
plained in each model into the proportion explained by the predictors
and by the covariance structure in order to examine how each com-
ponent contributed to model fit. Although the SSNM framework can
include a mixture of autocovariance models based on tail-up, tail-down
(i.e., based on network distance of flow-unconnected sites), and Eu-
clidean distance, we chose to consider only tail-up and Euclidean (Steel
et al., 2016; Steel et al., 2018). We elected to do this as isotopes move in
a downstream direction and we had no reason to believe that any ex-
planatory power achieved by using a tail-down covariance structure
would reflect the underlying mechanism. All data analyses were con-
ducted in R (http://cran.r-project.org) using the Spatial Stream Net-
work (SSN) package (Ver Hoef et al., 2014) and Spatial Tools for the
Analysis of River Systems (STARS) toolbox in ArcGIS 10.6 (Peterson
and Ver Hoef, 2014).

3. Results

3.1. General description and relationships with MWE

The measured δ18O and δ2H values in stream water samples ranged
from −16.50‰ to −9.37‰ (mean = −12.85‰) and from
−119.93‰ to−66.33‰ (mean =−92.42‰) respectively. In general,
the highest values were found in the Snoqualmie and Green Rivers and
the lowest values in the Wenatchee River. Only three samples in our
analysis had d-excess values less than 5‰. All of these samples were
collected in the Snoqualmie basin from streams that drained small,
stagnant ponds and were removed from further analyses. After their
removal, the measured d-excess values in stream water samples ranged
from 5.01‰ to 15.43‰ (mean = 10.28‰).

The regression models between MWE and isotopic signature dis-
played an inverse relationship for all basins except the Wenatchee
River, which displayed no relationship (Fig. 2). The δ18O-MWE slopes
for the regression models using both mainstem and tributary sites were
−2.5 ± 0.13‰ km−1 (R2 = 0.90) for the Snoqualmie River,
−2.2 ± 0.20‰ km−1 (R2 = 0.82) for the Green River,
−4.4 ± 0.66‰ km−1 (R2 = 0.49) for the Skagit River, and
−1.7 ± 0.28‰ km−1 (R2 = 0.48) for Cowee Creek. For the

Fig. 2. Regressions of δ18O values with MWE for samples collected during summer low flow for each basin. Lines represent the least squares relationships. Triangle
symbols are mainstem sites and circle symbols are tributary sites. Symbols are colored according to the mean annual precipitation (MAP) within the upstream
watershed.
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Wenatchee River, the R2 value was 0.05 and the δ18O-MWE slope was
−0.4 ± 0.41‰ km−1. In four basins, tributaries and mainstem sam-
ples fall together on the same regression but, in the Skagit River,
mainstem samples have lower isotopic values for a given MWE than
smaller tributaries.

3.2. Landscape covariates

The structure of landscape covariates differed dramatically across
basins and impacted our ability to model δ18O values as a function of
landscape covariates (Fig. 3). In the Snoqualmie and the Green basins,
most landscape predictors were highly correlated with one another. For
example, in the Snoqualmie basin, MWE had a correlation coefficient
greater than or equal to 0.75 with all landscape predictors except area
and latitude. Similarly, in the Green basin MWE had a correlation
coefficient greater or equal to 0.69 with all landscape predictors except

area. In the Skagit, Wenatchee and Cowee basins, correlation among
landscape predictors existed, but was less extreme. In the Skagit basin,
no correlation among predictors exceeded 0.75, with the exception of
MAT and MWE, which were almost perfectly correlated (-0.98). Ad-
ditionally, the Skagit is the only basin in which MAP and MWE were
negatively correlated (Fig. 3). The Wenatchee basin displayed the
lowest average correlation among landscape predictors. Only longitude
was moderately correlated (greater than 0.40) with all landscape cov-
ariates except soil and aquifer permeability. In Cowee basin, there was
a tight coupling among MWE, MAP, and MAT where all correlations
exceeded 0.92; however, beyond these relationships no correlation
exceeded 0.55.

3.3. Univariate and best-fit linear models

The direction and magnitude of relationships between δ18O and δ2H

Fig. 3. Correlation matrices for the Snoqualmie, Green, Skagit, and Wenatchee Rivers, and Cowee Creek. Both isotope metrics and landscape covariates are included.
Red indicates a negative correlation between two variables, and blue indicates a positive correlation. The darker the color, the stronger the correlation. See Table 2
for a description of covariates. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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values and landscape covariates varied across basins (Fig. 3). For ex-
ample, in the Snoqualmie and Green basins, δ18O and δ2H values were
highly negatively correlated with mean annual precipitation (MAP)
(-0.85, −0.69 for δ18O and −0.80, −0.72 for δ2H), whereas in the
Skagit, Wenatchee and Cowee basins this relationship was reversed
(0.86, 0.44, 0.76 for δ18O and 0.87, 0.67, 0.66 for δ2H). We note again
that the high collinearly of landscape predictors within basins made it
difficult to parse some effects.

Best-fit models for all basins included MWE but displayed clear
differences in both level of complexity and predictive accuracy. In the
Snoqualmie, Green and Cowee basins, best-fit models included only
MWE (Table 3). Calculated R2 values were 0.90 for the Snoqualmie,
0.82 for the Green, and 0.48 for Cowee. The RMSPE for these models
was 0.26, 0.36 and 0.42‰, respectively. In the Skagit and Wenatchee
basins, on the other hand, incorporating additional predictors beyond
MWE increased the amount of variance explained in our isotope data.
Additional covariates included in the Skagit model were MAP, area, and
aquifer permeability, whereas the only additional covariate included in
the Wenatchee model was longitude (Table 3). The Skagit River, similar
to other west side basins, displayed high predicative accuracy
(R2 = 0.87; RMSPE = 0.41‰) whereas the Wenatchee River displayed
low predictive accuracy (R2 = 0.47; RMSPE = 0.42‰). Independent
effect weights for the Skagit model show a relatively even partitioning
of variance among all predictors (Ielev = 21%, Iprecip = 33%,
Iarea = 26%, Iperm = 20%), whereas in the Wenatchee model the ma-
jority of variation in δ18O values is explained by longitude (Ilon = 70%,
Ielev = 30%).

3.4. Semivariograms and spatial stream network models

The Snoqualmie and Wenatchee basins showed spatial de-
pendencies for raw δ18O values (Fig. 4). For the Snoqualmie basin raw
δ18O values, semivariance for Euclidean distance (i.e. the straight line
distance between all sites) increased rapidly and linearly before le-
veling off around 35 km. This change in semivariance suggests that sites
beyond 35 km apart were uncorrelated, whereas sites closer together
were more highly correlated with one another. Semivariance for flow-
connected sites (i.e. the network distance between sites that share flow)
for raw δ18O values was generally much smaller and increased slowly
with distance. Furthermore, semivariance of raw δ18O values between
flow-connected sites never leveled off, suggesting the presence of an
unmodeled trend such as MWE. Similar patterns of semivariance were
apparent in the Wenatchee basin raw δ18O values, although overall
values and the difference between the magnitude of Euclidean and
flow-connected semivariance were both smaller. In addition, the
semivariance for the Euclidean distance leveled off at around 25 km in
the Wenatchee basin.

We compared model fit and variance decomposition for SSNMs with
four distinct autocovariance models (Table 4; Fig. 5; Fig. 6). For the
Snoqualmie basin, similar to the best-fit linear model, only MWE was
selected as a fixed effect, capturing between 81 and 90 % of the

variance in δ18O values (Table 4; Fig. 6). When spatial autocorrelation
was explicitly accounted for by including a covariance structure in the
model, the total variance explained was greater than the non-spatial
model; however, between 3 and 9 % of the variance previously ex-
plained by the covariates was shifted onto the covariance structure
(Table 4; Fig. 6). The SSNM with a tail-up covariance structure out-
performed all others and had the lowest AIC, RMSPE and R2. RMSPE
decreased from 0.26‰ in the linear model to 0.16‰, similar to ana-
lytical precision (0.12‰), and R2 increased from 0.90 in the linear
model to 0.96 (Table 4). Adding a Euclidean covariance structure did
not improve prediction accuracy as much as the tail-up model.

For the Wenatchee basin, longitude and MWE were again selected as
fixed effects, explaining 45–47% of the variation in δ18O values, sig-
nificantly less variation than in the Snoqualmie models. Spatial auto-
correlation explained an additional 14–26% of the variance not ex-
plained by covariates. Contrary to the Snoqualmie basin, models that
included a Euclidean covariance structure outperformed all others and
had the lowest AIC, RMSPE, and R2, suggesting that network structure
was less important in this basin (Table 4; Fig. 6). Including both tail-up
and Euclidean covariance structures improved the R2 and RMSPE over
the simple Euclidean model (0.71 vs 0.67 and 0.31‰ vs 0.33‰, re-
spectively), but resulted in a nearly identical AIC value (51.67 vs.
51.24, respectively). Although the models are comparable, we selected
the model with both a tail-up and Euclidean covariance structure to
move forward with further analyses.

Semivariograms of spatial and linear model residuals displayed a
reduction in semivariance as compared to the raw data for both basins
and distance measures (Fig. 4). This reduction suggests that by ac-
counting for spatially structured covariates such as MWE and longitude,
regression models remove some spatial autocorrelation. The decrease in
semivariance between raw data and linear residuals was more pro-
nounced for the Snoqualmie basin, whereas the decrease in semivar-
iance between linear and spatial residuals was more pronounced for the
Wenatchee basin. For both the Snoqualmie and Wenatchee basins,
semivariance of spatial model residuals is relatively flat. This pattern
suggests that accounting for spatial structure through SSNMs removes
the majority of spatial autocorrelation in the δ18O values.

4. Discussion

4.1. MWE gradient

Although we expected MWE to be the main determinant of isotopic
variation in surface water, our analysis revealed differences in surface
water MWE-δ18O slopes between basins based on basin size, shape and
location on the windward versus leeward sides of mountains. The
strong elevation gradient observed in western Washington basins and
Cowee Creek, all of which drain windward mountainsides, can be at-
tributed to the rainout effect, or Rayleigh distillation (Dansgaard, 1964;
Clark and Fritz, 1997). Storms bringing precipitation to western Wa-
shington and coastal Alaskan basins originate from the Pacific Ocean

Table 3
Best fit linear models from the Snoqualmie, Green, Skagit, Wenatchee, and Cowee basins. The independent effect weight is the percentage of variance explained by
each covariate.

Basin Covariates Covariate Coefficient (SE) Independent Effect Weight (%) R2 RMSPE

Snoqualmie MWE −0.0025 (0.00013) 100 0.90 0.26
Green MWE −0.0022 (0.00020) 100 0.82 0.35
Skagit MWE −0.0018 (0.00051) 21 0.87 0.38

MAP 0.00095 (0.00021) 33
Area −0.00015 (0.000041) 26
Aquifer Permeability 0.40 (0.14) 20

Wenatchee Longitude −2.99 (0.44) 70 0.47 0.42
MWE −0.0016 (0.00034) 30

Cowee MWE −0.0017 (0.00028) 100 0.48 0.41
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and move eastward. Continued rainout produces isotopically-depleted
precipitation at higher elevations, with the most depleted precipitation
found at the crest. Close proximity to the Pacific Ocean exacerbates the
rainout process. As the warm, wet air mass travels up the Cascade and
Alaskan Coast Mountains, it experiences orographic lifting and adia-
batic cooling, resulting in increased precipitation and the observed
elevation trends. Similar to most other studies globally, our observed
δ18O-MWE relationship is close to linear over the sampled elevation
range for windward basins (Poage and Chamberlain, 2001). The com-
bination of processes dominantly responsible for isotopic distillation
during rainout behave linearly over much of the world; however, basin
specific processes such as mixing of baseflow sources from differential
geologies may contribute to differences in δ18O-MWE slopes and pro-
portion of isotopic variation explained by MWE across basins.

Several studies have found global average isotopic-elevation re-
lationships, or lapse rates, for precipitation, snow, and river water be-
tween −2.1‰ km−1 and 2.9‰ km−1, except at latitudes greater than
70° where isotopic lapse rates are higher (Poage and Chamberlain,
2001; Bowen and Wilkinson, 2002; Dutton et al., 2005). In our study,
the Snoqualmie and Green basin δ18O-MWE slopes fall within this range
(−2.5 ± 0.13‰ km−1 and −2.2 ± 0.20‰ km−1, respectively). The
similar δ18O-MWE slopes of the Green and Snoqualmie Rivers are likely
due to the close geographic proximity of the basins and similar or-
ientation with respect to incoming coastal weather. Additionally, MWE

explains most of the variation in isotope ratios for the Snoqualmie and
Green Rivers, indicating that elevation-induced rainout is the greatest
control on δ18O values. The higher δ18O-MWE slope of the Skagit River
is surprising, given its close proximity to the Green and Snoqualmie
basins, but this basin has unique attributes discussed in the next section.
Our observed δ18O-MWE slope for Cowee Creek was lower
(-1.7 ± 0.28‰ km−1) than windward Washington basins even though
MWE was the only significant driver. However, Cowee basin is small
and glaciated and samples were collected over several months. This is
further discussed in the next section. Even though MWE was a strong
driver of isotopic variance, each windward basin responded uniquely,
reiterating the importance of basin specific isoscapes.

We did not observe a large δ18O-MWE slope in the Wenatchee basin,
which is located on the leeward side of the Cascade Range. For leeward
basins, if precipitation results from continued rainout of air masses as
they traverse topographic barriers, then continued Rayleigh distillation
on the leeward slope should produce an inverse relationship with alti-
tude. Although less prevalent in the literature than windward, oro-
graphically induced rainout (Poage and Chamberlain, 2001), inverse or
ambiguous δ18O-elevation relationships have been reported from lee-
ward slopes in the Sierra Nevadas (Friedman and Smith, 1970) and the
Canadian Rockies (Grasby and Lepitzki, 2002; Moran et al., 2007) for
precipitation isotopes, and from the Oregon Coast Range for stream
water isotopes (Brooks et al., 2012; Nickolas et al., 2017). Potential

Fig. 4. Semivariograms for raw δ18O values, residual δ18O values from the best-fit linear models, and residual δ18O values from the best-fit SSNMs for the Snoqualmie
and Wenatchee basins. Circles are proportional to the number of sites used to estimate each bin value.

Table 4
Model fit statistics from SSNMs in the Snoqualmie and Wenatchee basins. Variance component values are the percentage of variance explained by fixed effects
(covariates) and spatial error. Models in bold were selected as the best fit models.

Model Covariate Covariate Coefficient (SE) RMSPE AIC R2 Variance Component

Fixed effects (%) Spatial error (%)

Snoqualmie Nugget MWE −0.0025 (0.00013) 0.26 25.80 0.90 90 –
Tail-up MWE −0.0026 (0.00015) 0.16 −5.97 0.96 87 9
Euclid MWE −0.0025 (0.00017) 0.23 19.35 0.89 83 6
Euclid + Tail-up MWE −0.0026 (0.00019) 0.17 −4.18 0.96 81 15

Wenatchee Nugget Longitude −2.99 (0.44) 0.42 61.07 0.47 47 –
MWE −0.0016 (0.00034)

Tail-up Longitude −3.24 (0.52) 0.37 53.29 0.61 45 16
MWE −0.0016 (0.00037)

Euclid Longitude −3.22 (0.58) 0.33 51.24 0.67 42 24
MWE −0.0013 (0.00033)

Euclid + Tail-up Longitude −3.73 (0.62) 0.31 51.67 0.71 45 26
MWE −0.0015 (0.00034)
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reasons for the ambiguous δ18O-MWE relationship in the Wenatchee
basin are threefold. First, the amount of precipitation falling in the
Wenatchee basin is lower than in west side basins (e.g. Snoqualmie
MAP is 2435 mm/year and Wenatchee MAP is 1210 mm/year). Within
this drier climate, local evaporation of surface water could add to the
atmospheric vapor or subcloud evaporation could be influential, which

would negate isotope depletion from the rainout effect. Previous studies
have documented this dampened rainout effect (Ingraham and Taylor,
1991; Guan et al., 2009; Wassenaar et al., 2009; Bershaw et al., 2012).
However, we did not see the changes in d-excess expected if subcloud
evaporation were significant in the Wenatchee basin. Second, although
the Wenatchee samples show no systematic relationship with MWE

Fig. 5. Isoscapes from the Snoqualmie best-fit linear model (A), Snoqualmie best-fit SSNM (B), Wenatchee best-fit linear model (C), and Wenatchee best-fit SSNM (D).
Colors represent predicted δ18O values and the size of each point is inversely proportional to the prediction standard error.

Fig. 6. Variance decomposition into the
proportion of variation explained by cov-
ariates (blue), tail-up covariance structure
(yellow), Euclidean covariance structure
(red), and the nugget (gray) for each of the
SSNMs (categories on the x-axis) in the
Snoqualmie and Wenatchee basins.
TU = tail-up; Euc = Euclidean;
TU.Euc = tail-up and Euclidean. (For in-
terpretation of the references to color in this
figure legend, the reader is referred to the
web version of this article.)
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alone, when longitude, which is a proxy for distance inland, and MWE
are included together in the best-fit model, a δ18O-MWE slope similar to
windward basins emerges, although longitude was still the most im-
portant variable within the model. The Wenatchee basin is oriented
north to south and shares a long border with the Cascade crest (Fig. 1).
Consequently, the heaviest precipitation occurs near the crest. As a
vapor cloud moves eastward along the typical storm trajectory, pre-
cipitation becomes more depleted as a result of rainout. Rainout with
increasing distance from the Pacific Coast may counteract the less
pronounced elevation gradient. Lastly, turbulent atmospheric mixing of
air masses as they are forced up and over the Cascade crest may con-
tribute to the lack of an observable δ18O-MWE slope (Moran et al.,
2007). More research is needed into leeward basins to distinguish
among these three potential factors.

4.2. Other drivers of observed isotope patterns

The Skagit basin was unique among the windward basins in that the
best-fit model included MAP, watershed area, and aquifer permeability
as covariates in addition to MWE. Orientation with respect to storm
path alignment and topographic features of each basin likely drive
differences in the strength and slope of river 18O-MWE slopes observed
in windward basins and resulted in the inclusion of MAP in the Skagit
best-fit model (Scheihing et al., 2018). The Green and Snoqualmie
Rivers flow northwest. The Skagit River generally flows west; however,
the largest tributary to the Skagit, the Sauk, flows northwest (Fig. 1; Fig.
S1). Due to the rain-shadowing effects of Mt. Rainier and the Olympic
mountains, southwestern Puget Sound watersheds like the Green and
Snoqualmie tend to receive maximum precipitation during westerly air
flow, whereas watersheds in the northwest Puget Sound, like the Skagit,
tend to receive maximum precipitation during west-southwesterly air
flow (Neiman et al., 2011; Siler et al., 2013). As a result, precipitation
and elevation gradients largely align in the Green and Snoqualmie ba-
sins, with the greatest amount of precipitation occurring at high ele-
vations leading to strong covariation (Fig. 3). In contrast, the greatest
amount of precipitation in the Skagit basin occurs at mid elevations on
the western side of the basin, including in headwaters of the Sauk and
Baker Rivers (Fig. S1). East of the mainstem Skagit dams, at some of the
highest elevations in the basin, precipitation amount declines sub-
stantially due to a rain shadow effect produced by the high peaks of the
Skagit Crest within the basin (Fig. S1). Storms approaching the Skagit
basin on a west-southwesterly track reach the Sauk basin first as they
move inland. As they progress along their trajectory, continued rainout
results in progressively more isotopically depleted precipitation. The
influence of complex precipitation patterns in the Skagit basin was re-
flected in our data. Samples collected from the Sauk basin were sys-
tematically more isotopically enriched than samples collected from the
upper Skagit basin, even at identical elevations. Additionally, in our
best-fit model, MAP was positively related to δ18O values, indicating
that in areas of high MAP isotope ratios were more enriched. High MAP
at mid elevations likely contributes to the high δ18O-MWE slope ob-
served in the Skagit basin.

Basin attributes not examined within our modeling framework may
influence isotope ratios. Within the Skagit River, mainstem samples
displayed the lowest isotope ratios, likely indicating that the mainstem
of the Skagit is fed by higher elevation source water than small tribu-
taries (Fig. 2). The negative relationship between watershed area and
δ18O values in the Skagit best-fit model reflects this, indicating that in
large watersheds isotope ratios were more depleted. Glaciation in the
Skagit River points to the importance of high elevation glacial and
snowpack melt as a significant source of summer baseflow. Riedel and
Larrabee (2016) found that surface melt from glaciers contributes
6–12% of the Skagit River’s total summer runoff, and roughly twice that
fraction in August and September. This same study also noted that
glacial meltwater is concentrated in the tributaries Thunder Creek,
White Chuck River, Suiattle River, Baker River, and Cascade River (Fig.

S1). Our Skagit River water samples showed δ18O values below the
average δ18O-MWE regression line for the outlets of the White Chuck
and Suiattle Rivers and isotope ratios above the average δ18O-MWE
regression line for the Baker and Cascade River outlets. We would ex-
pect samples to fall below the line if a greater proportion of flow ori-
ginated from high-elevation glacial meltwater. The presence of glacial
meltwater and snowmelt may have skewed the high elevation water-
sheds to lower isotopic ratios and may have contributed to the high
δ18O-MWE slope observed in the Skagit basin.

Although the Cowee Creek basin is heavily glaciated, we did not
observe the same pattern of highly depleted mainstem isotope ratios
present in the Skagit basin and watershed area was not included in our
best-fit model. This was surprising, as previous studies have found
seasonal patterns in δ18O at the outflow of Cowee Creek that are con-
sistent with an increase in the proportion of streamflow derived from
δ18O-depleted snow and glacial melt in higher elevation watersheds
from late May into August (Fellman et al., 2014; Fellman et al., 2015).
Fellman et al. (2015) found an average δ18O ratio of −14.5‰ at the
outflow of Cowee Creek across summer months (May – August) with
δ18O ratios below −15.0‰ through most of August, reflecting the
contribution of glacial meltwater (average δ18O = −16.4‰) as the
winter snowpack is typically ablated by early summer. At the lowest
site on Cowee Creek in our study, samples collected in late May already
had values (−15.5‰) that were as low as those measured in late Au-
gust during the Fellman et al. (2015) study. The weak δ18O-MWE re-
lationship in Cowee Creek could be because high elevation, glacial
sources of water dominated the flow in most tributaries sampled during
our study. Higher resolution temporal sampling of the area is necessary
to parse these mechanisms.

Within the Snoqualmie and Green basins, all water isotope samples
fell upon a similar MWE gradient, regardless of whether it was a small
tributary, or mainstem samples that aggregate the entire basin (Fig. 2).
The isotopic composition of river water samples is determined by water
isotopes in precipitation infiltrating into mountain blocks. The sub-
sequent stream water is a mixture of groundwater baseflows with dif-
ferent transit times. The tight δ18O-MWE coupling suggests summer
baseflow derives from inputs more evenly dispersed throughout the
basin, potentially because of shallow groundwater influx (i.e., as op-
posed to deep groundwater flowpaths or snowmelt sources). The iso-
topic composition of shallow groundwater does not deviate sig-
nificantly from the mean weighted annual composition of precipitation
in temperate climates in areas without seasonal or spatial bias in re-
charge (Clark and Fritz, 1997; Bowen et al., 2011). In the Snoqualmie
and Green basins, nearly all precipitation falls within the winter
months, and previous studies have not found significant seasonal dif-
ferences in precipitation isotopes ratios in the Pacific Northwestern USA
(Brooks et al., 2012). Several studies find similar patterns for summer
baseflow (Yeh et al., 2014; Singh et al., 2016; Rautio and Korkka-Niemi,
2015). In contrast, Brooks et al (2012) found that the mainstem Will-
amette River, and outlets of other large rivers feeding the Willamette
had isotopic values that were lower than the predicted elevation gra-
dient relationship estimated from small watersheds, which we also
found in the Skagit River. They interpreted this difference as a bias
towards high elevation water sources dominating the flow within the
river, likely due to deep groundwater flowpaths within the Oregon High
Cascades. This suggests that the Green and Snoqualmie Rivers are much
less dependent on high elevation snowmelt for summer baseflow as
compared to the Cascade rivers in Oregon, and the Skagit River. Future
studies should more explicitly consider the geologic context of each
basin in order to understand the interaction between potentially com-
plex ground and surface water flowpaths.

Dams, reservoirs, and lakes are pervasive across our study basins
and have the potential to alter water storage and transport, thus im-
pacting our interpretation of isotope values below these structures. In
our data, we found small differences when examining isotope ratios
above and below the Howard Hansen Reservoir and Lake Wenatchee.
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The Howard Hansen Reservoir on the Green River and the Tolt
Reservoir, a similar hydropower structure in the Snoqualmie River, are
operated for flood control in the winter, flow augmentation in the
summer, and provide drinking water year-round. The reservoirs fill in
the late winter and spring, potentially holding back winter precipitation
and high elevation snowmelt and releasing it during summer low flow.
However, in our data, isotope ratios of water sampled above the
Howard Hansen Reservoir (δ18O = −11.92‰ and d-excess = 10.33)
were only slightly more depleted than those sampled at the outflow
(δ18O = −11.03‰ and d-excess = 7.24). Conversely, isotope ratios of
water sampled at the Lake Wenatchee outflow (δ18O = −15.32‰ and
d-excess = 11.29) were more depleted than ratios from both the in-
flowing Little Wenatchee (δ18O = −14.09‰ and d-excess = 11.47)
and White Rivers (δ18O = −14.94‰ and d-excess = 10.16), which
join together to form Lake Wenatchee. The isotopic signature of Lake
Wenatchee likely reflects the long-term average of river water input
which may be more depleted than isotope ratios of September river
flows due to a large influx high-elevation snowmelt in Spring. Previous
studies have found muted temporal isotopic variation below artificial
impoundments and natural lakes, reflecting extended retention times
and elevated river water mixing (Kendall and Coplen, 2001; Wassenaar
et al., 2011; Brooks et al., 2012; Trinh et al., 2017). Although the re-
tention time of water within impoundments is an important con-
sideration when interpreting downstream isotope ratios, our results il-
lustrate that despite the presence of extensive hydrologic modification
within our basins, isotopes can preserve signals of mainstem source
water dynamics.

4.3. In-stream and landscape processes shape isotope values

Ours is one of the first studies to use a class of geostatistical models,
Spatial Stream Network Models (SSNM), to model stream water isotope
ratios (but see Segura et al., 2019). The SSNM approach also allowed us
to model spatial correlation explicitly, taking advantage of the unique
topology of stream networks. Similar to studies of other ecological
phenomena (Isaak et al., 2014; Brennan et al., 2016; Filipe et al., 2017),
water isotopic ratios on stream networks showed substantial auto-
correlation and predictive accuracy was improved by spatial models
compared to non-spatial models (Bowen et al., 2011; Table 4; Fig. 5).
Inherent covariation in river basins can hinder statistical efforts to
identify mechanistic links between landscape gradients and features of
aquatic ecosystems and result in negative consequences such as inflated
goodness-of-fit metrics and inflated error terms on key coefficients that
may undermine model building (Lucero et al., 2011). Linear regression
assumes that each measurement is independent from others and con-
tains non-redundant information. If measurements are spatially auto-
correlated, standard error estimates will be artificially small, tests of
statistical significance will be too liberal, and estimates of R2 will be too
large (Dale and Fortin, 2009; Isaak et al., 2014). SSNMs explicitly
model spatial autocorrelation and therefore provide better estimates of
the effect of landscape covariates on isotope ratios.

For the Snoqualmie River, incorporating an autocovariance function
accounting for the branching river network structure resulted in modest
improvements to model performance. Most variation in δ18O values
was already explained by MWE, which is spatially-structured, resulting
in little residual variation or autocorrelation (Table 4; Fig. 4); however,
the best-fit model did include a tail-up component, illustrating the
importance of passive longitudinal transport of water isotopes along
stream networks. The dominance of MWE in the model likely occurs in
part due to the structure of landscape covariates in the Snoqualmie
River. Most landscape predictors were highly correlated with one an-
other, and the influence on isotope ratios aligned in the same direction
(e.g. MWE and longitude were positively correlated). In basins such as
the Snoqualmie, where landscape descriptors covary strongly and the
subsequent relationship between water isotopes and landscape de-
scriptors is simple, spatial models only slightly improve our

understanding of river water isoscapes.
In the Wenatchee River, on the other hand, incorporating spatial

structure in Euclidean space dramatically improved model perfor-
mance. The role of covariates in the Wenatchee models were limited,
with fixed-effects explaining only 47% of variation in non-spatial
models and 45–49% of variation in spatial models. Approximately two-
thirds of the variance in the best-fit SSNM could be attributed to fixed
effects and one-third to spatial structure in the Wenatchee model re-
siduals (Table 4). The strong Euclidean component in the Wenatchee
best-fit model, illustrated by the large proportion of variation explained
in Fig. 6, suggests that linear relationships with longitude and MWE
were insufficient to describe landscape processes influencing stream
water isotope values (McGuire et al., 2014; Zimmerman and Ver Hoef,
2017). Landscape features affecting isotope ratios could include local
geological features associated with groundwater upwelling, beyond the
general descriptor of aquifer permeability. Previous studies have shown
that geologic features, such as porous lava flows, sandstone, and
earthflows as well ashillslope characteristics (e.g. slope and roughness)
can influence baseflow isotopic composition (Nickolas et al., 2017;
Singh et al., 2016; Segura et al., 2019). Furthermore, in the Wenatchee
basin landscape covariates display little correlation with one another
and often align in opposing directions (e.g. MWE and longitude were
negatively correlated). These competing forces likely work against each
other to create a complex isotopic landscape that is difficult to model
using standard linear models. In basins such as the Wenatchee, where
the influence of covariates on isotope signature is weak and covariates
display little correlation with one another, including spatial structure
provides insight about the presence of key structuring processes that
would be unaccounted for in covariate selection.

4.4. Study limitations

As in any study, our ability to generalize results and make in-
ferences about other watersheds is limited by our sampling design,
dataset, and the models considered. In this study, water sample col-
lection locations were limited to areas easily accessed by roads, and
collection of samples across a large portion of the Upper Skagit basin
into Canada did not occur. Increased spatial coverage would improve
predictions of drivers of isotope ratios and allow us to consider a greater
number of predictors in our analyses. Additionally, although we con-
sidered five basins across a single sampling season (summer low flow,
2017), only one basin was located on the leeward side of mountains.

Although our snapshot in time provides a picture of drivers of the
isotope ratios during baseflow, it does not give insight into temporal
variation in drivers of isotope signature. Several studies have found
differences in drivers of isotope patterns across time (Liu et al., 2004;
Payn et al., 2012), and therefore our results should not be generalized
to other seasons or years. It should also be noted that while sampling of
the Washington basins took place over no more than two weeks, Cowee
Creek was sampled over the course of three months due to logistical
challenges in accessing its remote sites by aircraft. Lastly, it is important
to recognize that SSNMs are an extension of linear regression and both
methods predict at unsampled locations using smoothed averages.
Therefore, when we generated isoscapes features not included in our
sampling design (e.g. local point sources of groundwater) were not
included.

4.5. Management implications

Our study summarizes current knowledge of basin factors driving
variability in surface-water isotope ratios and provides a foundation for
future monitoring work as well as for leveraging the isotopic signature
of surface water in river basins and fisheries management. We observed
a strong MWE gradient across all rivers draining windward basins.
Furthermore, in the Snoqualmie and Green basins, MWE was highly
correlated with other parameters known to drive isotopic ratios. In
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these basins, simple MWE-based relationships permit easy interpreta-
tion of isotope data. Future work could harness the information they
contain for river basin management, such as predicting the contribution
of climate sensitive, high-elevation snowmelt to summer baseflow.

Changes to climate and hydrology are expected across the Pacific
Northwest. Climate models predict substantial winter warming, leading
to increased precipitation falling as rain and decreased snowpack,
translating to increased winter river runoff and reduced summer
baseflow discharge (Elsner et al., 2010). Measuring water stable iso-
topes would be a simple method for monitoring these changes over
time.

Impacts of global change will be heterogeneous both within river
basins and across the region, and understanding how high elevation
water contributes to stream discharge across basins will be a valuable
tool (Steel et al., 2018). For example, all basins in this study host po-
pulations of ESA-listed salmonids, which are limited by high summer
temperatures and low flows. Resource managers could easily access and
plot covariate data such as MWE, longitude, and MAP to identify other
basins in which these covariates are correlated, suggesting an easy to
interpret isotope-MWE relationship. The same simple isotope-MWE
relationship could also be applied to other midlatitude mountain ranges
with prevailing westerly winds and a north–south orientation, such as
the Sierra Nevada, the southern Alps, and the southern Andes (Siler
et al., 2013).

For Cowee Creek and the Skagit River, interpretation of water iso-
tope monitoring within the basins becomes more challenging. In the
Cowee basin the δ18O-MWE slope was much lower than expected.
Temporal isotopic variance at the outlet may indicate the dominance of
glacial sources over time, and we sampled over a period of high glacial
output; however, additional sampling over a more condensed time
period would be necessary for accurate interpretation. In the Skagit
Basin, interpretation of isotopic variation is difficult, as the orographic
rainout process becomes complicated by the complex topography and
sampling in the upper basin was limited. In basins with similar acces-
sibility issues, accurate isoscapes could help in monitoring the pro-
portion of streamflow derived from glacial and snowmelt and relieve
some of the burden of expensive field campaigns.

Our results provide guidance for future monitoring or research on
stable isotopes in surface waters. In the basins described above, with
expected simple and strong relationships between MWE and isotope
values, fewer samples may be necessary to create customized and ef-
fective models or management tools. In larger basins or in areas where
complex local atmospheric or hydrologic processes occur, greater
temporal and spatial sampling may be necessary in order to partition
water sources in ways that are both isotopically distinct and en-
vironmentally relevant.

Our study also provides guidance for understanding the types, ad-
vantages, and disadvantages of methods for stream isoscape generation.
We found that in basins where correlation between covariates and
isotope ratios is weak, spatial models can improve predictions and de-
monstrate evidence of landscape level patterns not captured by non-
spatial models. We also found that in basins where covariates known to
influence isotope signature correlate strongly with one another and are
themselves highly spatially structured, spatial models do little to im-
prove predictions. The choice to use spatial or non-spatial models
should be determined by data availability and the relevant questions.
Our results provide insight as to where the additional effort to build
these models may be a particularly good investment.

5. Conclusions

In this study we demonstrated that elevation was the dominant
predictor of isotope ratios across five Pacific Northwest basins, but the
importance of elevation varied between basins and depended on geo-
graphic location, landscape attribute configuration, and basin size.
Elevation explained a range of isotopic variation in surface water across

the five basins, but the nature of this relationship (δ18O-MWE slope,
other covariates) was different even between adjacent basins.
Incorporating spatial structure through the SSNM framework captured
aspects of water isotopic variation even in basins where variance ex-
plained by covariates was high. Spatial structure was particularly im-
portant to consider in the Wenatchee, our leeward side basin, where
covariates explained the least of the isotopic variation. Our results il-
lustrate that basin-specific models that include spatial structure im-
prove accuracy of surface-water isoscapes for understanding hydrologic
function, interpreting source contributions downstream, or assisting in
basin management.
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