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Abstract. Climate change is modifying river temperature
regimes across the world. To apply management interven-
tions in an effective and efficient fashion, it is critical to both
understand the underlying processes causing stream warm-
ing and identify the streams most and least sensitive to envi-
ronmental change. Empirical stream thermal sensitivity, de-
fined as the change in water temperature with a single de-
gree change in air temperature, is a useful tool to character-
ize historical stream temperature conditions and to predict
how streams might respond to future climate warming. We
measured air and stream temperature across the Snoqualmie
and Wenatchee basins, Washington, during the hydrologic
years 2015–2021. We used ordinary least squares regression
to calculate seasonal summary metrics of thermal sensitivity
and time-varying coefficient models to derive continuous es-
timates of thermal sensitivity for each site. We then applied
classification approaches to determine unique thermal sen-
sitivity regimes and, further, to establish a link between en-
vironmental covariates and thermal sensitivity regimes. We
found a diversity of thermal sensitivity responses across our
basins that differed in both timing and magnitude of sensi-
tivity. We also found that covariates describing underlying
geology and snowmelt were the most important in differenti-
ating clusters. Our findings and our approach can be used to
inform strategies for river basin restoration and conservation
in the context of climate change, such as identifying climate-
insensitive areas of the basin that should be preserved and
protected.

1 Introduction

Globally, river temperature regimes are shifting in response
to a changing climate. As water temperature is a critical
component of aquatic ecosystems, these changes will alter
an essential element of the habitat of many lotic organisms
(Daufresne and Boët, 2007). To apply management interven-
tions in an effective and efficient fashion, it is critical to both
understand the underlying processes causing stream warm-
ing (Arismendi et al., 2014; Steel et al., 2017) and iden-
tify the streams most and least sensitive to environmental
change (Parkinson et al., 2016; Pyne and Poff, 2017; Jackson
et al., 2018). Measures of empirical stream thermal sensitiv-
ity, defined as the change in water temperature with a single
degree change in air temperature or the slope of the statistical
relationship between air temperature and water temperature,
address both concerns.

Thermal sensitivities reflect the combined influence of
both spatially and temporally varying meteorological and hy-
drological factors, and a large body of literature examines hy-
pothesized climate, landscape, and hydrogeologic drivers of
thermal sensitivity (Table 1a). Variation in solar radiation is
often the most important driver of both air and river tempera-
tures, and as a result, air and river temperatures are typically
correlated (Johnson, 2003; Leach et al., 2023). Landscape
features such as riparian canopy cover and topographic shad-
ing associated with steep watersheds can reduce exposure to
solar radiation, suppressing stream temperatures (Webb and
Zhang, 1997). Stream temperature is also influenced by dis-
charge through changes to thermal inertia and residence time
(Meier et al., 2003) and runoff composition where snowmelt,
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surface runoff, and groundwater inflow entering the stream
have different temperature signatures than the stream itself
(Webb and Zhang, 1997; Mohseni and Stefan, 1999; Cadbury
et al., 2008). Inputs from water sources such as snowmelt and
groundwater upwelling decouple air and water temperatures
and result in a decreased thermal sensitivity of water tem-
perature to air temperature (Tague et al., 2007; Mayer, 2012;
Johnson et al., 2014). As a result, the relationship between
air and water temperatures can also be a useful diagnostic
tool for identifying putative hydrological processes for which
empirical measures are often unavailable. Thermal sensitiv-
ity has been used in the past to estimate areas of shallow and
deep groundwater influence (Snyder et al., 2015; Briggs et
al., 2018) and to understand the role of snowmelt in modulat-
ing river temperature (Lisi et al., 2015; Winfree et al., 2018).
Despite conceptual agreement about hypothesized drivers of
thermal sensitivity, substantial uncertainty persists regarding
the relative importance of these covariates in controlling and
predicting thermal sensitivity.

Empirical stream thermal sensitivity has been widely used
to characterize historical stream temperature conditions and
to predict how streams might respond to future climate
warming (Mohseni et al., 2003; Mantua et al., 2010). Gen-
erally, larger thermal sensitivities indicate that water temper-
atures are more likely to track changes in air temperature
(Isaak et al., 2016, 2018a; Mauger et al., 2017). However,
there are concerns about using present-day thermal sensitiv-
ities to predict future stream temperatures, as it can be dif-
ficult to derive insights into river responses to perturbations
from statistical models that rely on historical relationships
that may not extrapolate well to future conditions. For ex-
ample, past studies have found that using empirical relation-
ships for extrapolating to future climate scenarios without ac-
counting for underlying processes such as snowmelt, ground-
water, and annual hysteresis may provide inaccurate predic-
tions of future stream temperatures (Leach and Moore, 2019;
Steel et al., 2019). Under changing climatic conditions, the
interrelations between air temperature and other processes
controlling stream temperature may not remain stable (Aris-
mendi et al., 2014). Additionally, stream networks can ex-
hibit patchy thermal conditions due to spatially heteroge-
neous landscape attributes such as riparian shading, valley
form and aspect, and geology (Bogan et al., 2003; Benyahya
et al., 2010). Large-scale models that do not incorporate fine-
scale variation into thermal sensitivity may not accurately
predict thermal habitat at ecologically relevant scales. De-
spite these shortcomings, thermal sensitivity remains a com-
monly used and straightforward tool that allows for compar-
ison between locations within rivers and has the potential to
guide management.

There is a need to better understand how thermal sensi-
tivities evolve throughout the year and along river networks
and to develop a clearer understanding of the relationships
between derived model coefficients and important watershed
processes. Furthermore, thermal sensitivity itself can vary

across time and space, rendering stationary values insuffi-
cient to describe variability in this parameter. A clearer vi-
sion of how thermal sensitivities vary would allow natural re-
source managers to understand what a single snapshot in time
or space represents and could provide insight into how river
thermal sensitivity may evolve under nonstationary air tem-
perature and precipitation regimes. Groups of streams (clus-
ters) that share similar patterns of thermal sensitivity will
likely also share similar risk profiles. Identification of stream
clusters could help managers tailor investment in streams ac-
cording to watershed-specific influences (Mayer, 2012). This
study aims to answer the following questions across two Pa-
cific Northwest river basins. (1) What is the spatial and tem-
poral distribution of commonly used thermal sensitivity met-
rics across each basin? (2) What are the representative ther-
mal sensitivity regimes, how do they cluster on the landscape,
and how do these clusters differ from clusters based on air
and water temperature individually? (3) What are the land-
scape or climate factors that best predict thermal sensitivity
cluster membership? Finally, we consider the statistical func-
tionality of these methods in river networks.

2 Methods

2.1 Study area

The Snoqualmie River begins as three distinct forks in
the Mt. Baker Snoqualmie National Forest and drains a
1813 km2 watershed on the western side of the Cascade
Range, Washington (Fig. 1). The three forks originate in
forested public land before converging and flowing through a
mix of agricultural, residential, and commercial land use. In
one major tributary, the Tolt River, a dam and a large reser-
voir provide drinking water for the city of Seattle (Fig. S4).
The Wenatchee River drains 3440 km2 of the eastern Cas-
cades before flowing into the Columbia River (Fig. S5). Al-
though land use is similar to the Snoqualmie basin, wherein
the headwaters originate in forested public lands before flow-
ing through a mix of agricultural, residential, and commercial
land use, forest density is generally lower in the eastern Cas-
cades.

Both the Snoqualmie and Wenatchee basins have a
Mediterranean climate with dry summers and wet, mild
winters influenced by proximity to the Pacific Ocean. The
climate on the eastern side of the Cascades is drier than
that of the western side; the average annual precipitation
is 1874 mm (939 mm) and the average annual temperature
is 5.7 °C (5.3 °C) for the western (eastern) Cascades. How-
ever, the prevailing westerly winds, which cross the Cas-
cades, create temperature and precipitation gradients that
vary widely across the Wenatchee basin. In both basins, pre-
cipitation occurs predominately from October to March. The
coldest month is typically January, whereas the warmest is
July. Rivers have a mixed rain–snow hydrology with sub-
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Table 1. Hypothesized relationships between landscape covariates and thermal sensitivity based on the previous literature (a) and the ob-
served relationship between landscape variables and thermal sensitivities within our study basins in summer (b). Loess curves are shown to
aid in visualization and correlation coefficients quantify the strength of the linear relationship. See Fig. S6 in the Supplement for a detailed
description of how river attributes covary with one another.

(a) Hypothesized relationship (b) Observed relationship

Stream or watershed Theoretical Explanation Observed relationship in summer
attribute (covarying relationship
variables) with thermal

sensitivity

Mean watershed slope Negative – Increased snowmelt and cooling
+ elevation due to faster velocity water movement
+ distance upstream and shorter water residence time
− soil depth (Winfree et al., 2018).

– Topographic shading associated
with steep watersheds suppresses
stream temperature by reducing
exposure to solar radiation
(Webb and Zhang, 1997).

Mean watershed Negative – Higher elevations have higher snowmelt
elevation accumulation and a greater proportion of
+ slope snowmelt in spring.
+ distance upstream – The impact of elevation on spring and
+% lake area early summer stream temperature is
− soil depth diminished in years with low winter

snow accumulation.

Distance upstream Negative – The duration of surface water exposure to solar
−watershed size radiation and atmospheric energy flux is
+ slope higher in low-gradient watersheds with
+ elevation slower streamflow velocities

(Poole and Berman, 2001).

Percent riparian Negative – Riparian vegetation provides shading to streams,
forest cover reducing exposure to solar radiation
+% forest cover (Webb and Zhang, 1997), particularly during
−watershed size summer baseflows.

– Forest canopy can influence snow accumulation
within a watershed and snowmelt contribution to
streams. Low-density forests accumulate more snow
relative to high-density forests (Varhola et al., 2010).

– Conversion of forested land area can accelerate
runoff and reduce infiltration, warming surface
flows before they reach stream channels
(Naiman et al., 2005; Nelson and Palmer, 2007).

Hydraulic Positive – Hydraulic conductivity refers to the ability
conductivity of a geologic material to transmit water and
+ baseflow is calculated from the mean lithological hydraulic
index conductivity content in surface or near-surface geology.

– Relatively high hydraulic conductivity material
would be represented by something like unconsolidated
alluvial sands and gravels.

– High hydraulic conductivity is typically associated
with areas of greater groundwater activity and lower,
more stable thermal sensitivity values.
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Figure 1. A map of the Snoqualmie (a) and Wenatchee (b) basins’ water and air temperature monitoring sites as well as the most downstream
USGS gage for each basin. Thermal sensitivity, defined as the change in water temperature with a single degree change in air temperature,
versus mean watershed elevation (MWE) for each site–year combination (c). The dashed line in panel (c) is included as a reference.

stantial winter rain and spring snowmelt, although the We-
natchee basin receives more winter precipitation as snow.
Peak flow generally occurs during winter in the Snoqualmie
River and spring in the Wenatchee River (Fig. 2). The ge-
ology differs across the basins. The geology of the Sno-
qualmie basin is characterized by a deep glacial aquifer in
the lowland portion of the watershed, whereas in the alpine
area much of the ground surface is directly underlain by
bedrock that lacks significant fracture systems (Turney et
al., 1995; Bethel, 2004). In contrast, the Wenatchee basin’s
geology consists of both an aquifer within the sedimentary
bedrock of the central and lowland areas and an overlying
unconsolidated alluvial and outwash aquifer located primar-
ily in river valley bottoms (Montgomery Water Group, 2003).
The Snoqualmie and Wenatchee basins both have reaches

where water temperature exceeds regulatory thresholds es-
tablished for salmonids that are protected by the US Endan-
gered Species Act (ESA). Both basins support ESA-listed
Chinook salmon (Oncorhynchus tshawytscha) and steelhead
trout (Oncorhynchus mykiss), and the Wenatchee basin addi-
tionally supports populations of bull trout (Salvelinus conflu-
entus) and sockeye salmon (Oncorhynchus nerka).

Water temperature loggers (NSnoqualmie = 42,
NWenatchee = 31) were installed throughout the main-
stems, on major tributaries, and on a selection of minor
tributaries for both the Snoqualmie and Wenatchee rivers
(Fig. 1). Practical limitations forced sites to be publicly
accessible, on private property with landowner permission,
and within 1 km of a road. For this study, water temperature
was recorded using HOBO TidbiT v2 (UTBI-001) loggers
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Figure 2. Average annual discharge, snow water equivalent (SWE), and total precipitation for the outlets of the Snoqualmie and Wenatchee
basins across the sampling time frame (black dashed lines) and interannual variability across the 7 water years included in this analysis
(2015–2021, gray lines). Discharge gage locations can be found in Fig. 1a and b, and SWE and precipitation data are from DAYMET Daily
Surface Weather data for the upstream watershed of each discharge gage (Thornton et al., 2020).

every hour from 1 October 2014 through 30 September 2021
in both basins. We hereafter use North American hydrologic
years (1 October–30 September) instead of calendar years
with the year of summer data as the year of reference.
Air temperature data were recorded using HOBO Pendant
(UA-002-64) loggers every hour at all water temperature
monitoring sites. Air temperature was logged for a subset of
11 (6) sites in the Snoqualmie (Wenatchee) basin beginning
on 1 October 2014 and for all sites beginning on 1 October
2016 (1 October 2018). Air loggers were placed on trees
along the stream bank as close to the stream temperature
loggers as possible. The air temperature loggers were
secured at approximately breast height on the northern side
of the trees. Solar shields were fashioned to house both water
and air temperature loggers. All air and water temperature
data for the Wenatchee basin logged prior to 1 October 2018

were collected by the Washington Department of Ecology
(Washington Department of Ecology, 2023).

2.2 Exploratory analysis of air–water correlation
summary metrics

We calculated two summary metrics to characterize the rela-
tionship between air temperature and water temperature. For
each site, summary metrics were derived from linear regres-
sions between mean daily values of air and water tempera-
ture. The slope of this relationship, the thermal sensitivity,
indicates the average difference in water temperature when
comparing time periods with a 1° difference in air temper-
ature. For example, a thermal sensitivity of 0.5 would indi-
cate that, based on historical data, when air temperature at
a site differs by 1 °C, water temperature differs on average
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by 0.5 °C (Leach and Moore, 2019). The strength of this re-
lationship (R2) is an indicator of how well water tempera-
ture can be approximated by air temperature and is calculated
as the Pearson correlation value between air and water tem-
perature. Summary metrics were calculated separately for
each season. Seasons were defined as fall (October, Novem-
ber, December), winter (January, February, March), spring
(April, May, June), and summer (July, August, September).

Watersheds for each site were delineated and covariates
describing the watersheds were obtained from commonly
available geostatistical products (Table 2). Covariates were
divided into four broad categories: basin topography (water-
shed area, mean watershed elevation, average stream slope,
and distance upstream), land use (percent watershed forest,
riparian forest, and lake area), climate (average temperature,
precipitation, and percent precipitation falling as snow), and
hydrogeology (baseflow index, hydraulic conductivity, and
soil depth to bedrock). Temperature, precipitation, and per-
cent precipitation as snow were obtained from DAYMET
Daily Surface Weather data (Thornton et al., 2020), and
all the other landscape covariates were obtained from the
Stream-Catchment (StreamCat) database (Hill et al., 2016).

A large body of literature examines landscape-level drivers
of air and water temperature correlations within rivers.
Therefore, we first summarized hypothesized drivers of ther-
mal sensitivity based on the previous literature and their co-
varying landscape variables within our basins (Table 1a). We
then conducted an exploratory analysis of the relationship be-
tween landscape covariates and thermal sensitivity to better
understand patterns in our data and set up future hypothesis
testing. Due to the correlated nature of our dataset, no for-
mal statistical tests were conducted. We plotted summer ther-
mal sensitivity against hypothesized drivers, including mean
watershed elevation (MWE), watershed slope, distance up-
stream, percent riparian forest cover, and substrate hydraulic
conductivity. Loess curves were plotted to aid in data visu-
alization, and correlation coefficients between thermal sensi-
tivity and each landscape covariate were used to quantify the
strength of the linear relationship.

We also explored the relationship between spring ther-
mal sensitivity and snowmelt, defined as the change in snow
water equivalent (SWE) for a given season and denoted as
1SWE, and between summer thermal sensitivity and mean
air temperature and total precipitation. Climatic variables
were obtained from gridded DAYMET data products (Thorn-
ton et al., 2020) and calculated for the upstream catchment of
each monitoring station.

2.3 Spatially weighted clustering of thermal sensitivity,
water temperature, and air temperature

To identify representative regimes of air–water temperature
correlations, we employed a varying-coefficient linear model
to obtain continuous, daily estimates of thermal sensitivity.
We then defined a spatially weighted dissimilarity matrix

for use in clustering, which quantifies the spatial correla-
tion in thermal sensitivity time series while accounting for
the directed river network structure. We used this spatially
weighted dissimilarity matrix with agglomerative hierarchi-
cal clustering to identify groups of sites exhibiting similar
patterns in thermal sensitivity over time and compared these
clusters to those generated using only water or air tempera-
ture. The details of each step are provided in the following
sections.

2.3.1 Varying coefficient linear model for air–water
relationships

To derive a continuous thermal sensitivity metric, we fit a
time-varying coefficient model (TVCM) to air and water
temperature data. The TVCM is an effective tool for explor-
ing dynamic features of the sensitivity of water temperature
with changes in air temperature and uses a parametric lin-
ear model but with time-varying coefficients (Li et al., 2014,
2016). For a given site, we described the varying coefficient
model for the air–water temperature relationship as

yt = β0,t + xtβ1,t + εt , t = 1, . . .,T , (1)

where β0,t and β1,t are varying intercept and slope co-
efficients. To estimate the time-varying coefficients, we
adopted an ordinary least squares kernel regression with the
Nadaraya–Watson estimator, where we fit a set of weighted
local regressions with an optimally chosen window size de-
fined by the bandwidth, b, and the weights given by the
kernel function (Hoover, 1998; Casas and Fernandez-Casal,
2019). The kernel and its bandwidth control the level of
smoothing by adjusting the weight that the neighboring time
points have on estimates at t . The bandwidth was set to 0.2
a priori to ensure consistency across time series. We used

the Gaussian kernel that is of the form k(x)= 1
2πe
−
x2
2 . The

varying intercept term represents the mean water temperature
at time t , and the varying slope term represents the local sen-
sitivity of water temperature to changes in air temperature at
time t . We used the R package tvReg (Casas and Fernandez-
Casal, 2021) to implement the model.

We filtered resultant time series for site years with> 218 d
(60 % of the year) and gaps of ≤ 7 d, yielding 250 site
years from 73 sites across both the Snoqualmie and We-
natchee basins. To capture the typical range and timing of
thermal sensitivity at each site, we created a single repre-
sentative time series of thermal sensitivity at each site by
calculating the mean daily thermal sensitivity for each day
of the year across all the years of filtered data. We use
this average annual time series for subsequent clustering
analyses. To ensure that using an average annual time se-
ries of thermal sensitivity was an appropriate choice given
the structure of our data, we conducted a supplementary
analysis to assess cluster sensitivity to interannual variabil-
ity (Sect. S1 “Interannual variability in thermal sensitivity”
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Table 2. Physical environmental data and basin characteristics used to predict air–water clusters.

Variable Category Unit Data source

Watershed area Basin topography km2 Hill et al. (2016)
Mean watershed elevation Basin topography m Hill et al. (2016)
Avg stream slope Basin topography mm−1 Hill et al. (2016)
Distance upstream Basin topography km Hill et al. (2016)
% watershed forest Land use % Hill et al. (2016), Dewitz (2019)
% riparian forest Land use % Hill et al. (2016), Dewitz (2019)
% lake area Land use % Hill et al. (2016), Dewitz (2019)
Avg temperature Climate °C Thornton et al. (2020)
Avg precipitation Climate mm Thornton et al. (2020)
Avg percentage precipitation as snow Climate % Thornton et al. (2020)
Baseflow index Hydrogeologic % Hill et al. (2016), Wolock (2003)
Hydraulic conductivity Hydrogeologic % Hill et al. (2016), Olson and Hawkins (2015)
Soil depth to bedrock Hydrogeologic cm Hill et al. (2016), Carlisle et al. (2009)

in the Supplement). Measured air and water temperature
and modeled thermal sensitivities for each site can be vi-
sualized at the following link: https://lmcgill.shinyapps.io/
TimeVarying_AWC/ (last access: 4 March 2024; McGill,
2024).

2.3.2 Estimating a spatially weighted dissimilarity
matrix

To quantify spatial correlation while accounting for the di-
rected river network structure, we developed a dissimilarity
measure for time series of thermal sensitivity, water tempera-
ture, and air temperature that incorporated spatial correlation
between sites (Haggarty et al., 2015). The general form of the
proposed dissimilarity measure between sites x and y can be
written as

dc
xy = dxy ˆcov(hs) , (2)

where dc
xy is the spatially weighted dissimilarity matrix, dxy

is the Canberra distance (Lance and Williams, 1967), and
ˆcov(hs) is a valid stream-distance-based covariance matrix.
To estimate ˆcov(hs), we used the tail-down model that was

introduced by Ver Hoef and Peterson (2010). Due to the com-
plex structure of the tail-down model, it is necessary to model
spatial correlation on a river network with a covariogram. We
first estimated the covariance between time series at each site
using a classic formula from Cressie (1993), which states that
the estimated covariance between sites x and y is given by

ˆcov(x,y)=
T∑
t=1

{xt − x}{yt − y}

T
, (3)

where xt and yt are the values of the variable (thermal sen-
sitivity, water temperature, or air temperature) at sites x and
y at time t and T is the total number of discrete times. This
results in a single value which summarizes the covariance be-
tween the time series at the two sites over the period of inter-
est. We then plotted these point summaries of the covariance

between pairs of curves against lags (measured as stream dis-
tance) to obtain an empirical stream-distance-based covari-
ogram. We fit an exponential covariance function to this em-
pirical covariogram and evaluated the model at relevant dis-
tances to obtain an estimated stream-distance-based covari-
ance matrix ˆcov(hs). We used this new covariance matrix to
weight the Canberra distance matrix as shown in Eq. (2). The
final spatially weighted dissimilarity matrix, dc

xy , was then
used in clustering analyses.

2.3.3 Agglomerative hierarchical clustering

We used agglomerative hierarchical clustering (AHC) to
identify groups of sites where the patterns in thermal sen-
sitivity, water temperature, and air temperature were similar
over time using the hclust function in R (R Core Team, 2022).
AHC is a common clustering method (Olden et al., 2012;
Maheu et al., 2016; Savoy et al., 2019; Isaak et al., 2020)
where each time series starts in its own cluster and the hier-
archy is built by repeatedly merging pairs of similar clusters
separated by the shortest distance (i.e., measured as the simi-
larity between individual time series) until all points are con-
tained in a single cluster. To decide which clusters are merged
in every iteration, AHC uses a dissimilarly metric (dc

xy , de-
rived in Eq. 2) and a linkage criterion. We used Ward’s min-
imum variance linkage method for clustering, where the dis-
tance between two clusters is computed as the increase in
the sum of squared differences after combining two clusters
into a single cluster. The shortest of these links (minimum in-
crease in the sum of squared differences) that remains at any
step causes the fusion of the two clusters whose elements are
involved.

A difficulty associated with cluster analysis is determining
the most appropriate number of clusters given the data be-
cause no a priori optimal number of clusters exists. Clusters
resulting from alternative choices can be evaluated through
internal cluster validity indices (CVIs); there are a variety
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of CVIs, most of which combine within-cluster cohesion
(intra-cluster variance) and between-cluster separation (inter-
cluster variance) to compute a quality measure. There is no
universally best CVI (Arbelaitz et al., 2013), and therefore
we calculated a suite of five CVIs, including the Silhou-
ette, Gap, Davies–Bouldin, Calinski–Harabasz, and general-
ized Dunn indices, using the NbClust R package (Charrad
et al., 2014). A final number of clusters was determined by
a majority-rules approach based on the optimal number of
clusters suggested by each index (Table S2 in the Supple-
ment).

To determine whether cluster assignments were stable or
preserved in a perturbed dataset similar to the original one
and therefore likely reflective of real differences, we con-
ducted a bootstrapping approach where sites were sampled
with replacements, and then AHC was performed on the re-
sampled data using the fpc R package (Hennig, 2020). For
each bootstrapped cluster, we assessed the similarity between
each new cluster and the most similar original cluster with
the Jaccard index. The Jaccard coefficient ranges from 0 to 1.
Clusters with a coefficient larger than 0.75 were considered
stable and clusters with a coefficient between 0.5 and 0.75
indicate that the cluster is measuring a pattern in the data,
but exact site assignment may be doubtful and clusters with
a mean Jaccard coefficient of less than 0.5 were considered
unstable and may not reflect a true pattern in the data (Maheu
et al., 2016; Savoy et al., 2019). We repeated the bootstrap-
ping procedure 10 000 times; the mean Jaccard coefficient
for each cluster is reported in Table 4.

2.3.4 Identification of environmental drivers in thermal
sensitivity

We used classification and regression trees (CARTs; Breiman
et al., 1984) to investigate the relative importance of basin
topography, land use, climate, and hydrogeologic attributes
(Table 2) for predicting each site’s membership in a ther-
mal sensitivity cluster. A CART is typically used to attempt
to predict membership in clusters using environmental at-
tributes, and it allows the modeling of nonlinear relationships
among mixed variable types and facilitates the examination
of intercorrelated variables in the final model (De’ath and
Fabricius, 2000; Olden et al., 2008). We took an exploratory
approach to this analysis due to our relatively small sample
size (NSnoqualmie = 42, NWenatchee = 31), which limited our
ability to conduct statistical tests. Therefore, we calculated
variable relative importance, defined as the sum of squared
improvements at all splits determined by the predictor. These
values are scaled to sum to 100 (rounded). To ensure no sin-
gle site unduly impacted CART results (Krzywinski and Alt-
man, 2017), we conducted a supplementary leave-one-out
cross-validation analysis to ensure relative importance esti-
mates were stable across different permutations of the data
(Fig. S7). We used the R package rpart (Therneau and Atkin-
son, 2019) to implement the CART model.

Table 3. Air–water correlation average summary metrics by basin
and season. Averages are calculated as the mean value of summary
metrics at all the sites across each basin and season.

Basin Season Thermal R2

sensitivity

Min Mean Max Min Mean Max

Snoqualmie Fall 0.22 0.59 0.79 0.58 0.92 0.99
Winter 0.05 0.40 0.71 0.20 0.86 0.96
Spring 0.26 0.60 0.97 0.67 0.89 0.98
Summer 0.19 0.56 0.95 0.41 0.85 0.97

Wenatchee Fall 0.40 0.57 0.74 0.74 0.94 0.98
Winter 0.05 0.28 0.47 0.44 0.84 0.95
Spring 0.14 0.42 0.72 0.59 0.88 0.98
Summer 0.06 0.41 0.66 0.08 0.77 0.96

3 Results

3.1 General patterns in temperature, precipitation, and
thermal sensitivity

This analysis included data from 7 hydrologic years, each
with differing temperature and precipitation patterns. Gen-
erally, the years spanned by our dataset were warmer than
the historical average (1901–2000), with wetter-than-average
winter and fall months and drier spring and summer months
(Fig. S1). For the western (eastern) Cascades, all the years
(2015–2021) have average annual temperatures higher than
the long-term average of 8.6 °C (3 °C), although individual
seasons were slightly cooler than average. The year 2015
stood out as a year with an exceptionally warm winter, low
snowpack, and dry spring. Temperature and precipitation
patterns in the western and eastern Cascades were gener-
ally similar; however, precipitation anomalies were typically
smaller in the eastern Cascades due to the overall lower pre-
cipitation in this region (Figs. 2 and S1).

Summary metrics describing air–water temperature rela-
tionships exhibited substantial variation across time (sea-
son and year) and space. Across all the season–year com-
binations, thermal sensitivities ranged from 0.05 to 0.97
(mean= 0.54) in the Snoqualmie basin and from 0.06 to 0.74
(mean= 0.42) in the Wenatchee basin (Table 3). Seasonal
distributions of thermal sensitivities also differed. For exam-
ple, fall thermal sensitivities in both basins were relatively
homogeneous, with 90 % of the values falling between 0.47
and 0.70, whereas spring and summer thermal sensitivities
exhibited a broader range of values, with 90 % of the values
falling between 0.30 and 0.84 in spring and between 0.25 and
0.78 in summer. Air temperature was generally a good pre-
dictor of water temperature, as evidenced by R2 values that
ranged from 0.20 to 0.99 (mean= 0.88) in the Snoqualmie
basin and from 0.08 to 0.98 (mean= 0.85) in the Wenatchee
basin (Table 3).

Overall, weak and inconsistent patterns emerge in sum-
mer between thermal sensitivity and landscape and climate
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variables (Fig. 3; Table 1b). For climate variables, only
1SWE appeared to have a relationship with thermal sensi-
tivity (Fig. 3). The relationship between 1SWE and thermal
sensitivity was negative and nonlinear, displaying a wedge-
shaped pattern wherein large snowmelt events did not reduce
thermal sensitivities below 0.25 (Fig. 3). For landscape vari-
ables, correlation coefficients were overall small (|ρ |< 0.3),
indicating weak to non-existent linear relationships between
landscape covariates and observed thermal sensitivity (Ta-
ble 1b). A weakly negative relationship between thermal sen-
sitivity and distance upstream was observed for both basins.
Percent riparian forests and thermal sensitivity showed no
relationship for either basin. The relationship between hy-
draulic conductivity and thermal sensitivity was weakly pos-
itive and parabolic in the Snoqualmie basin.

3.2 Patterns of clustering for water temperatures, air
temperatures, and thermal sensitivities

Time-varying thermal sensitivities displayed periods of both
high and low values within a season, which was not neces-
sarily represented when looking only at seasonal summary
metrics (Figs. 4 and 5). Thermal sensitivity varied alongside
water and air temperature within the Snoqualmie and We-
natchee basins. Generally, thermal sensitivity rose sharply
in late spring, was highest in late summer, declined slowly
throughout the fall, and remained depressed through winter
and early spring.

Spatially weighted AHC yielded four clusters for thermal
sensitivity, with a CVI range of 2–4, two clusters each for
air (CVI range of 2–5) and water (CVI range of 2–4) tem-
perature in the Snoqualmie basin, five clusters for thermal
sensitivity (CVI range 2–5), and two clusters each for air
(CVI range of 2–3) and water (CVI range of 2–5) temper-
ature in the Wenatchee basin (Figs. 4 and 5; Table S2). For
both basins, clusters of air and water temperature correspond
closely to elevational gradients (Figs. S4 and S5). Higher-
elevation sites exhibited generally lower magnitudes but sim-
ilar patterns in air and water temperatures (Table 4). For ex-
ample, within both basins, seasonal water temperatures were
synchronized, with the cluster minimum and maximum wa-
ter temperatures occurring within a day of each other (Ta-
ble 4). In the Snoqualmie basin, air temperature clusters were
stable, with mean Jaccard indices of 0.91 for high-elevation
sites (Cluster 2, n= 11 sites) and 0.73 for low-elevation sites
(Cluster 1, n= 31 sites). Water temperature clusters were
slightly less stable, with mean Jaccard indices of 0.65 for
high-elevation sites (Cluster 2, n= 17 sites) and 0.89 for
low-elevation sites (Cluster 1, n= 25 sites). Air and water
temperature clusters in the Wenatchee basin were more sta-
ble than the Snoqualmie clusters. In the Wenatchee basin,
air temperature clusters had mean Jaccard indices of 0.85 for
high-elevation sites (Cluster 2, n= 25 sites) and 0.95 for low-
elevation sites (Cluster 1, n= 6 sites), and water temperature
clusters had mean Jaccard indices of 0.86 for high-elevation

sites (Cluster 2, n= 23 sites) and 0.73 for low-elevation sites
(Cluster 1, n= 8 sites).

Clustering patterns for thermal sensitivity were more com-
plex and less stable than air and water temperature clusters,
particularly for the Snoqualmie basin (Figs. 4 and 5; Table 4).
In the Snoqualmie basin, Cluster 1 (n= 11 sites) consisted
primarily of low-elevation tributaries that exhibited stable
thermal sensitivities throughout the year, producing a cluster-
average range of only 0.15 (Fig. 4; Table 4). Cluster 2 was
small (n= 5 sites), and the distribution of sites within this
cluster included three mainstem sites and two high-elevation
tributaries. Despite the large geographic distances separating
sites, this cluster was highly stable with a mean Jaccard in-
dex of 0.88. Cluster 2 was characterized by a mean thermal
sensitivity of 0.52 and the highest annual variability, with a
cluster-average range of 0.45. Cluster 3 was large (n= 15
sites) and contained sites located within the upper regions of
the Snoqualmie River. Cluster 3 had the lowest mean thermal
sensitivity (mean= 0.40). Lastly, Cluster 4 (n= 11 sites) ex-
hibited the lowest stability of any cluster in the Snoqualmie
basin, with a mean Jaccard index of 0.55. Sites in this clus-
ter were mainly situated on the mainstem Snoqualmie and its
major tributaries. This cluster was distinguished by the high-
est mean thermal sensitivity (mean= 0.65). In the Wenatchee
basin, all five thermal sensitivity clusters were relatively sta-
ble. Clusters 1 (n= 7 sites), 4 (n= 8 sites), and 5 (n= 8
sites) demonstrated similar seasonal patterns in thermal sen-
sitivities, with minimum values occurring in late spring (wa-
ter days 216, 207, and 214) and maximum values occurring
in late summer (water days 324, 331, and 330). These clus-
ters also showed moderate to high stability (mean Jaccard
indices of 0.79, 0.86, and 0.79). Cluster 3 (n= 7 sites) exhib-
ited the highest mean thermal sensitivity (mean= 0.40) and
encompassed primarily low-elevation tributaries (Peshastin
and Mission Creek; Fig. S5). Cluster 2 was unique in that it
consisted of a single site (Chumstick Creek) that was nearly
always assigned to a unique cluster when included in the
bootstrapping procedure. The thermal sensitivity for this site
was low (mean= 0.29) and virtually flat throughout the year
(range= 0.07). CART analysis indicated that basin topog-
raphy and hydrogeologic attributes were the principal dis-
criminators of thermal sensitivity clusters. The top predic-
tors of cluster membership (i.e., predictors with a greater than
10 % increase in the mean standard error if removed from the
model) were the MWE and baseflow index in the Wenatchee
basin and the watershed slope, MWE, and soil depth in the
Snoqualmie basin (Fig. 6). Variable importance distributions
differed between the Wenatchee and Snoqualmie basins, al-
though in both basins several covariates had similar relative
importance values. Covariate distributions also varied across
clusters within a basin. In the Snoqualmie basin, Cluster 1
sites were generally below a MWE of 600 m, whereas Clus-
ter 3 sites were generally mid-sized and at a high elevation
with a low baseflow index. In the Wenatchee basin, Cluster 1,
4, and 5 sites were predominately located at high elevations
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Figure 3. Summer thermal sensitivity values for all site–year combinations in the Snoqualmie and Wenatchee basins versus air tempera-
ture (a) and precipitation (b). Spring thermal sensitivity values for all site–year combinations versus the total snow water equivalent (SWE) (c)
from gridded DAYMET data for each sampling point. Points are colored by basin. Basins that have no snowmelt in a given year are not shown
in panel (c).

Figure 4. Average time series (a) and spatial clustering results (columns and colors indicate unique clusters) for average annual air temper-
ature (b), water temperature (c), and thermal sensitivity (d) in the Snoqualmie basin. The colored lines indicate mean average annual values
for each cluster, and gray lines denote average annual values for each site within a given cluster.

with steep slopes. Cluster 4 sites exhibited a large proportion
of precipitation falling as rain. Sites in Clusters 2 and 3 were
generally low-elevation sites with a high baseflow index and
soil depth.

4 Discussion

Thermal sensitivity varies throughout the year and reflects
hydrologic conditions at a given time and place within a wa-
tershed; therefore, it should not be conceptualized as a static

value. Although summary metrics of thermal sensitivity, such
as average values over summer, can still prove useful and in-
formative, it is essential to acknowledge the non-stationarity
of the relationship between air and water temperature to ob-
tain an accurate understanding of how river temperatures re-
spond to changing conditions. We find that the underlying
geology and climate are important controls on thermal sensi-
tivity across two Pacific Northwest river basins, and thermal
sensitivities reflect aspects of river dynamics not redundant
with water and air temperature. Overall, this study provides
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Figure 5. Average time series (a) and spatial clustering results (columns and colors indicate unique clusters) for average annual air temper-
ature (b), water temperature (c), and thermal sensitivity (d) in the Wenatchee basin. The colored lines indicate mean average annual values
for each cluster, and gray lines denote average annual values for each site within a given cluster.

Table 4. Averaged metrics for all sites within each cluster determined with the spatially weighted agglomerative hierarchical clustering. For
timing metrics, days are reported as hydrologic day, where a value of 1 indicates 1 October and a value of 365 indicates 30 September.

Metric Basin Cluster No. of Mean Minimum Maximum Cluster
sites (timing) (timing) stability

Thermal sensitivity Snoqualmie 1 11 0.50 0.41 (224) 0.56 (308) 0.68
2 5 0.52 0.36 (181) 0.81 (315) 0.88
3 15 0.40 0.27 (201) 0.64 (316) 0.67
4 11 0.65 0.52 (199) 0.84 (316) 0.55

Wenatchee 1 7 0.39 0.20 (216) 0.65 (324) 0.79
2 1 0.27 0.23 (28) 0.30 (101) 0.62
3 7 0.40 0.27 (131) 0.54 (11) 0.94
4 8 0.29 0.14 (207) 0.48 (331) 0.86
5 8 0.35 0.15 (214) 0.66 (330) 0.69

Air Snoqualmie 1 31 10.2 1.01 (94) 19.7 (305) 0.91
2 11 8.02 −0.42 (145) 18.9 (304) 0.73

Wenatchee 1 6 9.68 −4.52 (95) 25.0 (304) 0.95
2 25 6.48 −7.88 (107) 21.3 (310) 0.85

Water Snoqualmie 1 25 10.1 3.91 (94) 17.8 (304) 0.65
2 17 7.99 2.94 (94) 15.6 (304) 0.89

Wenatchee 1 8 8.39 1.95 (108) 18.5 (310) 0.73
2 23 5.74 0.37 (107) 14.5 (310) 0.86

a framework for using thermal sensitivity regimes to improve
understanding of factors contributing to stream temperatures
and will enable managers to target mitigation and adaptation
activities to work best with local conditions within a water-
shed.

4.1 Patterns of thermal sensitivity clustering

Our analysis of stream air and water temperatures supports
the presence of distinct thermal sensitivity regimes, provid-
ing an organizing framework for river research and manage-
ment by identifying sites with similarities across the net-
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Figure 6. Relative variable importance for all covariates in the Snoqualmie (a) and Wenatchee (b) basins, together with the distributions of
variables across clusters for the four most important variables (c) in the Snoqualmie basin (mean slope, elevation, soil depth, and baseflow
index) and in the Wenatchee basin (elevation, baseflow index, mean slope, and hydraulic conductivity). Boxes are grouped and colored by
cluster membership. See Fig. S8 for plots of the remaining relative variable importance.

work. We found that thermal sensitivity regimes reflected
non-redundant aspects of river dynamics relative to air and
water temperature alone. Air temperature and water temper-
ature clusters closely corresponded to one another and were
almost entirely determined by the elevation of the temper-
ature loggers, whereas thermal sensitivity clusters showed
more variability in annual patterns and were intermixed spa-
tially (Figs. 4 and 5). Previous studies within the Pacific
Northwest found that, generally, colder streams are less sen-
sitive to air temperature fluctuations than warmer streams
(Luce et al., 2014; Kelleher et al., 2021). Air and water clus-
tering results are consistent with previous studies that ob-
served broad temporal correspondence of air and river tem-
perature dynamics with differing magnitudes of response
(Bower et al., 2004; Chu et al., 2010; Garner et al., 2014;
Isaak et al., 2018b). More locally, Isaak et al. (2020) found
that, across western rivers, much of the information in stream
temperature records could be summarized by a relatively lim-
ited number of distinct regime components primarily driven
by differences in elevation and latitude.

Viewing thermal sensitivity as a continuous parameter
adds novel insights to our understanding of river basin func-
tioning. Studies have highlighted the importance of annual
shifts in the processes that drive heat budgets as well as

the non-stationarity of the resulting statistical relationships
(Arismendi et al., 2014; Boyer et al., 2021). Our clustering
analysis overcomes these issues by using a varying coeffi-
cient model that treats thermal sensitivity as a continuous
function through time rather than a series of discrete sum-
mary metrics, and it allows clustering based on the entirety
of average annual patterns. The observed complexity in the
thermal sensitivity response hints at the diversity of phys-
ical processes controlling the stream temperature response,
and the large, clear shifts in the thermal sensitivity magni-
tude across the year call into question the common practice
of summarizing a river’s sensitivity as a static value. The abil-
ity to directly observe shifts in the air–water temperature re-
lationships also opens the possibility of using thermal sensi-
tivity as a diagnostic tool to examine gradual changes in the
importance of drivers of water temperature, such as dynamic
changes in riparian shading or snowmelt.

4.2 Climate controls on thermal sensitivity

Seasonal variability of thermal sensitivity metrics was evi-
dent for our basins. Within both the Snoqualmie and We-
natchee basins, winter thermal sensitivities were low and
varied strongly with MWE (Fig. 1). Observed low thermal
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sensitivities in winter were likely due to the nonlinear re-
lationship between air and stream temperature at cold tem-
peratures when air temperatures can dip below the water
temperature freezing limit (Mohseni et al., 1998, 1999). Air
temperature covaries strongly with elevation in the Pacific
Northwest basins, and sites that are high in the watershed
will experience a greater number of sub-freezing days and
therefore greater decoupling between air and water tempera-
tures. Fall thermal sensitivities were relatively homogeneous,
whereas spring and summer thermal sensitivities exhibited a
broader range of values. We expect thermal sensitivities to
be similar during periods of heavy precipitation, when wa-
ter sources with thermal characteristics distinct from air tem-
perature, such as groundwater and snowmelt, contribute rela-
tively less flow. The greater variability of responses in spring
and summer indicates that the relative magnitude of energy
exchange processes controlling river temperatures are more
diverse than in fall or winter (Hrachowitz et al., 2010).

Snowmelt likely contributed to observed differences in
thermal sensitivity across sites in spring and early summer.
For summary metrics, the relationship between snowmelt
and spring thermal sensitivity formed a wedge-shaped pat-
tern, wherein sites with limited snowmelt displayed both
high and low thermal sensitivity, but sites with extensive
snowmelt always display low thermal sensitivity (Fig. 3).
For the clustering analysis, although the proportion of pre-
cipitation falling as snow showed limited variable impor-
tance, MWE and slope covaried closely with snow accu-
mulation and were among the most important predictors of
cluster membership, perhaps masking a statistical signal of
snowfall (Fig. 6). In both the Snoqualmie and Wenatchee
basins, clusters with higher elevation, steeper slopes, and
greater snowmelt within the catchment had thermal regimes
that were less sensitive to changes in air temperature during
spring and early summer. Importantly, snowmelt buffering,
the process wherein snowmelt-influenced streams have lower
thermal sensitivity due to a direct input of cold water and a
corresponding increase in flow rates and water depths (van
Vliet et al., 2011; Siegel et al., 2022), diminishes through-
out the summer. By late summer, high-elevation, snowmelt-
influenced sites were often more sensitive to air temperatures
than their low-elevation counterparts (Figs. 4 and 5). Sites
within Cluster 4 in the Wenatchee basin were an exception
to this pattern and maintained summer thermal sensitivities
that were substantially depressed relative to adjacent loca-
tions (e.g., Clusters 1 and 5). This is likely due to continuous
summer snowmelt inputs within these catchments and points
to the importance of high-elevation, late-summer snowpack
melt as a significant source of summer baseflow and control
on water temperatures during the months of greatest heating
within these watersheds.

Numerous studies have examined the buffering impact of
snowmelt on water temperature due to advective flux from
cooler meltwater entering the river. Studies in Alaskan rivers
found a linear, negative relationship between summer ther-

mal sensitivity and snowmelt (Lisi et al., 2015; Cline et
al., 2020), and a recent study in the Snoqualmie basin found
that snowmelt can reduce basin-wide peak summer tempera-
tures, particularly in high-elevation tributaries, and the ther-
mal impacts of meltwater can persist through the summer
(Yan et al., 2021). Our results suggest that snowpack offers
substantial buffering to changes in air temperature across
mountain river basins but that the largest impacts are lo-
calized across space and time. Climate change is expected
to shift snowmelt earlier and reduce snow water resources
(Barnett et al., 2005; Musselman et al., 2021). The loss of
snow may result in warming in snow-influenced systems and
the subsequent homogenization of thermal conditions across
basins (Winfree et al., 2018). Homogenization of thermal
conditions likely leads to important changes in ecological
functions and ecosystem services supported by lost thermal
heterogeneity, such as a loss of cold-water patches for Pacific
salmon (Brennan et al., 2019).

4.3 Hydrogeologic controls on thermal sensitivity

Hydrogeologic characteristics shaped the relationship be-
tween air and water temperatures across the Wenatchee and
Snoqualmie basins. The inclusion of baseflow index, hy-
draulic conductivity, and soil depth in determining cluster
membership (Fig. 6) implies the importance and detectabil-
ity of groundwater as a key mediator of thermal sensitiv-
ity regimes in Pacific Northwest basins. Clusters with high
baseflow index, hydraulic conductivity, and soil depth val-
ues generally had lower summer and less variable thermal
sensitivities (Figs. 4, 5, and 6), implying greater groundwa-
ter influence (Kelleher et al., 2012). Interestingly, despite the
clear importance of hydrogeologic metrics in the clustering
analysis, results from summary metric exploratory analysis
were mixed and, in the Snoqualmie basin, did not align with
expectations of a negative relationship between thermal sen-
sitivity and groundwater influence (Table 1b). Although it
is possible to infer broad patterns in surface–groundwater
connectivity using datasets of interpolated geologic proper-
ties (i.e., hydraulic conductivity, soil depth) or water sources
(i.e., baseflow index), individual hydrogeologic metrics of-
ten have substantial uncertainty, do not covary perfectly, and
may be particularly unconstrained for mountain headwater
streams (Wolock et al., 2004; Patton et al., 2018; Briggs et
al., 2022). Additionally, the influence of these processes can
be localized and variable across space (Johnson et al., 2017)
and substantially impacted by human modification. The abil-
ity to use thermal sensitivity as an empirical measure of
groundwater influence, therefore, shows great promise for
understanding catchment processes and informing manage-
ment and restoration actions at ecologically relevant scales
(Snyder et al., 2015). Although our approach moves us closer
to a mechanistic understanding of the relationship between
thermal sensitivity and groundwater, mixed results from our
analyses emphasize the need for additional targeted studies.
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An investigation of the underlying geology across the Sno-
qualmie and Wenatchee basins supports our conclusion that
low thermal sensitivities are indicative of groundwater in-
puts. The lowland portion of the Snoqualmie watershed con-
tains a deep, permeable, and productive glacial aquifer that
is presumed to be the source of summer baseflow to much
of the river (Bethel, 2004; McGill et al., 2021; Turney et
al., 1995). Glacial and interglacial deposits in the valley con-
tain several geohydrologic units with differing aquifer poten-
tials (Bethel, 2004); however, most deposits can form small
but useable aquifers that could help to sustain baseflow in
summer months (Turney et al., 1995; Soulsby et al., 2004;
Blumstock et al., 2015). Soil depth, hydraulic conductivity,
and baseflow index were correspondingly high in streams
from Clusters 1 and 4 that overlay the lower portion of the
watershed (Fig. 6). Thermal sensitivities reflected this pat-
tern, wherein sites draining low-elevation tributaries (Clus-
ter 1) generally had relatively constant thermal sensitivities
throughout the year (Fig. 4). Conversely, the upper portion
of the Snoqualmie basin is covered by thin soil over imper-
meable bedrock lacking extensive fracture networks, mean-
ing that rain and snowmelt are not retained in the mountains
but are rapidly transmitted to the stream system (Debose
and Klungland, 1964; Nelson, 1971; Goldin, 1973, 1992).
Sites with catchments predominantly within this upland area
tended to belong to Clusters 2 and 3 and displayed high sum-
mer thermal sensitivities, perhaps indicating limited ground-
water buffering.

In the Wenatchee basin, two major aquifers exist: an
aquifer within the sedimentary bedrock of the central and
lowland areas and an overlying unconsolidated alluvial and
outwash aquifer located primarily in river valley bottoms
across the basin (Montgomery Water Group, 2003). The
bedrock aquifer consists of sandstones and shales, which
tend to have moderately low permeability. Folding and fault-
ing have caused the shale to break up or fracture, and ground-
water moves preferentially within these zones of higher sec-
ondary permeability. The alluvial and outwash aquifers, on
the other hand, exhibit relatively high permeability where
groundwater can move easily and are considered the pri-
mary groundwater source (Wildrick, 1979; Montgomery Wa-
ter Group, 2003). Cluster 2 in the Wenatchee basin, consist-
ing of a single site located at the mouth of Chumstick Creek
(Fig. S5), stands out for having a unique, nearly flat ther-
mal sensitivity compared to patterns at other sites (Fig. 5).
Covariate distributions for the clustering results showed that
Chumstick Creek has a relatively high hydraulic conductivity
and baseflow index (Figs. 6 and S8). A transition from low-
to high-permeability glacial material occurs near the mouth
of Chumstick Creek (Montgomery Water Group, 2003), and
it is possible that substantial groundwater discharge occurs
near this discontinuity (Neff et al., 2019). Similarly, sites
within Cluster 3 showed low variability in thermal sensitivity
and had high soil depth and baseflow index values. Streams

within this cluster are situated on top of predominantly sand-
stone bedrock (Frizzell, 1979; Gendaszek et al., 2014).

Overall, the importance of groundwater is consistent
with previous studies, which find that thermal sensitiv-
ity decreased with increasing groundwater contribution
(O’Driscoll and DeWalle, 2006; Chang and Psaris, 2013;
Beaufort et al., 2020; Georges et al., 2021). The degree to
which groundwater decouples trends in stream and air tem-
perature depends on stream volume, the rate of groundwater
inflow, and the depth of the groundwater source. Although
not examined in this study, aquifer source and groundwa-
ter depth likely influence thermal sensitivity estimates, with
runoff sourced from deep groundwater being less variable
and less sensitive in comparison to groundwater sourced
from shallow subsurface flows (Tague et al., 2007; Johnson
et al., 2021; Hare et al., 2021). Shallow groundwater temper-
atures are already responding to climate change (Menberg et
al., 2014). As warming continues, the summer cooling ca-
pacity of groundwater may be reduced, limiting the avail-
ability of cold-water refugia patches sourced by groundwater
(Brewer, 2013; Briggs et al., 2013).

4.4 Landscape controls on thermal sensitivity

Variable relationships between thermal sensitivities and land-
scape covariates highlight complexities in stream thermal
regimes. For example, mean channel slope was an important
predictor of cluster membership for both the Snoqualmie and
Wenatchee basins but showed a weak to non-existent rela-
tionship with summer thermal sensitivity summary metrics.
Steeper channel slopes and greater stream velocities limit
warming in streams by decreasing the time for equilibra-
tion with local heating conditions (Donato, 2002; Webb et
al., 2008; Isaak et al., 2012), and topographic shading associ-
ated with steep watersheds can suppress stream temperature
by reducing exposure to solar radiation (Webb and Zhang,
1997). In the Wenatchee basin, the Cluster 3 site, Chumstick
Creek, drains a steep canyon. This may contribute to ob-
served low, stable thermal sensitivities throughout the year.
Additionally, watershed size and distance upstream covary
closely and display relatively consistent relationships with
summer thermal sensitivity summary metrics despite rank-
ing moderately in variable importance. We expected thermal
sensitivity to increase with river size; groundwater influence
should be more visible in smaller streams because the vol-
ume of water is small and the travel time of the water from
the source is short and not sufficient to equilibrate water tem-
perature with the atmosphere (Mohseni and Stefan, 1999;
Tague et al., 2007; Beaufort et al., 2016). Reduced sensitiv-
ity of headwater streams to air temperature was observed in
the Aberdeenshire Dee, Scotland (Hrachowitz et al., 2010),
and Danube River, Austria (Webb and Nobilis, 2007), and
small Pennsylvanian streams were shown to be less sensitive
to changes in air temperature than larger streams (Kelleher et
al., 2012). However, Hilderbrand et al. (2014) found no re-
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lationship between thermal sensitivity and watershed size in
Maryland streams.

We expected landscape covariates to be important predic-
tors of thermal sensitivity regimes; however, these covariates
were of limited importance and showed no relationship with
summary metrics (Table 1b; Fig. 6). Several factors may ac-
count for this. Inherent covariation in river basins can hinder
statistical efforts to identify mechanistic links between land-
scape gradients and features of aquatic ecosystems (Lucero
et al., 2011); land cover characteristics may have a small im-
pact that went undetected due to noisy observations or lim-
ited variability within our study region. It is also possible that
land cover metrics may not adequately describe the intended
process. For example, the relative unimportance of riparian
shading may be due in part to our metric of shade, which
was limited to riparian forest cover and ignored topographic
shading and vegetation height. Lastly, human modifications
to the river that are not captured by land cover statistics, such
as channelization or the presence of dams and reservoirs,
may alter thermal sensitivity and obscure natural gradients.
For example, areas of the river that are degraded and sub-
sequently disconnected from their floodplain may have ar-
tificially high thermal sensitivities, and the release of water
from dams and reservoirs has the potential to either warm
or cool downstream temperatures, depending on the dynam-
ics of where and how impounded water is released (Ahmad
et al., 2021; Cheng et al., 2022). Future research could in-
clude a covariate for sinuosity or variance of thalweg depth
to better capture these effects. Untangling exact controls will
require additional research.

4.5 Assessment of the statistical approach

Collecting data on dynamic stream networks over time has
inherent challenges that lead to relatively low sample sizes
and missing data as well as complex correlation structures
across space and time. Our statistical approach was designed
to manage these challenges, enabling exploration of several
hypotheses. These data, collected at a relatively large number
of sites in a parallel structure across two basins, allow an
assessment of how sensitive the statistical approach may be
to these constraints.

The time series of both air and water temperature used in
this analysis have periods of missing values that span weeks
to months. Classical clustering techniques require complete
datasets, limiting analyses to time series without gaps. To
overcome this issue, we calculated a single representative
time series at each site that captures the typical range and
timing of thermal sensitivity. Alternative options for deal-
ing with missing values include removing data points that
do not cover the target time period or imputing missing val-
ues by means of statistical procedures or summary metrics
(e.g., Savoy et al., 2019; Beaufort et al., 2020). However,
we chose not to use these approaches in our study due to
the long and inconsistent periods of missing values across

sites. We acknowledge that interannual variability in precip-
itation and temperature impacts river thermal sensitivity, and
average time series calculated from differing years may ex-
hibit differences in shape and timing for reasons outside of
inherent characteristics (Sect. S1, “Interannual variability in
thermal sensitivity”). Future studies could use novel cluster-
ing methods capable of dealing with sparse datasets, which
would provide more detailed information on clusters gener-
ated from time periods with robust values versus data scarcity
(Carro-Calvo et al., 2021). Alternatively, recent advances in
space–time imputation for river basins may prove a fruitful
direction (Li et al., 2017).

Our calculation of time-varying thermal sensitives also ne-
cessitated decisions regarding which features of the time se-
ries to preserve. Selection of the bandwidth parameter and
kernel function for the time-varying model will impact es-
timation of the thermal sensitivity and intercept. Generally,
with larger bandwidth estimates or averaging periods (e.g.,
daily, weekly, or monthly), intercept estimates increase and
thermal sensitivity estimates decrease. Decisions of this na-
ture should be approached carefully and with a clear ques-
tion in mind. For this study, we were interested in seasonal to
annual patterns in thermal sensitivity and thus chose a band-
width of 0.2, resulting in a smooth seasonal time series. Pre-
vious studies have also used regression splines to estimate
the time-varying relationship between air and water temper-
atures (Haggarty et al., 2015). This approach smooths data
and can account for missing data but may not preserve small-
scale features of interest. We chose to use absolute values of
our thermal sensitivity time series, as we cared about differ-
ences in mean thermal sensitivity as well as correlated vari-
ability. Future work could normalize thermal sensitivity time
series first to examine only patterns.

While general patterns could be detected through our anal-
ysis, the details were sensitive to exactly which sites were
sampled and included in the analysis. In dynamic river sys-
tems with high spatial heterogeneity and inherent difficul-
ties in accessing certain areas of the network, this is always
likely to be true. Our approach of averaging across years and
clustering across sites appears to manage these realities well
and provide general guidance on the river networks sam-
pled. For example, cross-validation results for CART mod-
eling suggest that certain variables were consistently iden-
tified as more influential for cluster prediction and that re-
sults were relatively robust to the inclusion of individual data
points (Fig. S7). Strengthening the assessment of underly-
ing drivers and controls to provide guidance for unsampled
river networks will require that similar datasets are collected
across more and more river networks. Data can then be as-
sembled and analyzed to provide more general conclusions
about hydrogeologic, land use, and climatic controls of river
thermal regimes.
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4.6 Implications for management and future directions

Classifying rivers based on thermal sensitivity could be a
powerful tool when planning for global change. Our re-
sults show that annual patterns in thermal sensitivity are di-
verse and mediated by the underlying geology and climate
across two Pacific Northwest river basins. Climate change
is decreasing snowpack in the region, resulting in earlier
runoff and extended summer baseflow (Elsner et al., 2010;
Wu et al., 2012), and may decrease groundwater discharge
depending on the sources and timing of recharge (Brooks
et al., 2012; McGill et al., 2021). For many of our study
sites, thermal sensitives were highest in late summer during
the hottest, lowest flow portion of the year. Previous studies
have found that the impact of fluctuations in discharge gen-
erally increases during dry, warm periods, when rivers have a
lower thermal capacity and are more sensitive to atmospheric
warming (van Vliet et al., 2013). High thermal sensitivity in
late summer and in high-elevation streams, which are typ-
ically thought to be climate refuges, is therefore troubling
for the conservation of native cold-water species such as Pa-
cific salmon (Mantua et al., 2010; Isaak et al., 2016). Climate
change will likely decrease juvenile rearing and spawning
habitat quantity and quality, although it is important to note
that streams with high thermal sensitivity may still provide
adequate habitat in selected portions of the year if stress-
related thresholds are not exceeded (Armstrong et al., 2021).

Examining thermal sensitivity regimes improves under-
standing of factors contributing to stream temperatures and
may enable managers to target mitigation and adaptation ac-
tivities to work best with local conditions, thus maximizing
benefits given limited resources. For example, given the im-
portance of subsurface geology within the Wenatchee and
Snoqualmie basins, targeted actions to restore floodplain
functions that recharge aquifers through actions such as plac-
ing engineered logjams or reintroducing beavers could be
prioritized (Abbe and Brooks, 2013; Pollock et al., 2014; Jor-
dan and Fairfax, 2022). Additionally, identification of par-
ticularly insensitive portions of the river could help to bet-
ter constrain areas where cold-water patches exist that may
be used as refuges for cold-water fish (Snyder et al., 2020).
This process-based approach will be particularly important
as non-stationary relationships caused by climate change
make it unreliable to use past regressions built under histor-
ical climate conditions (Boyer et al., 2021). Furthermore, as
longer, more spatially extensive air and water temperature
time series become available (Isaak et al., 2017), we can be-
gin to ask questions about (1) the spatial extent of different
thermal sensitivity regimes, (2) how interannual variability
shifts with climate conditions and geographic context, and
(3) detecting changes in the external drivers of thermal sensi-
tivities. Such insights will improve our understanding of river
ecosystems while offering a suite of new tools for monitoring
the impact of management decisions and climate change.
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